Table 6 A comparative analysis of the accuracy and computational complexity of the proposed approach versus conventional feature selection methods for insect classification is presented.

From: Integrating feature selection and explainable CNN for identification and classification of pests and beneficial insects

Feature Selection

Classifier

Accuracy (%)

Models

Train/Prediction Time (s)

All+PCA

SVM

85

1200

12/0.8

RF

87

1500

15/1.0

KNN

83

800

10/0.6

NB

80

500

8/0.5

MI

SVM

86

1100

11/0.7

RF

88

1400

14/0.9

KNN

84

700

9/0.5

NB

81

450

7/0.4

Fisher

SVM

84

1000

10/0.6

RF

85

1300

13/0.9

KNN

80

650

8/0.4

NB

78

400

6/0.4

Chi-2

SVM

83

950

9/0.6

RF

86

1250

12/0.8

KNN

82

600

7/0.4

NB

79

420

6/0.4

MIC

SVM

87

1000

10/0.6

RF

88

1350

13/0.8

KNN

83

700

8/0.5

NB

80

400

6/0.4

VarThresh

SVM

82

900

9/0.5

RF

84

1200

12/0.8

KNN

79

550

7/0.4

NB

75

380

5/0.3

Proposed XAI

SVM

90

850

8/0.5

RF

92

1000

9/0.6

KNN

87

550

6/0.4

NB

85

350

4/0.3