Table 2 Hyperparameter settings for hybrid metaheuristic–MLP models.

From: Predicting the mechanical behavior of municipal solid waste layers in the Barmshour Landfill stability analysis

Algorithm

Hyperparameter

Value/range

Description/reference

BBO-MLP

Habitat size

50–500

Population size (common in BBO literature)

Mutation probability

0.01

Typical value from BBO optimization studies

Migration probability

0.7

Standard exploration–exploitation balance

Number of generations

1000

Sufficient for convergence in preliminary tests

MVO-MLP

Universe size

50–500

Population size

Wormhole existence probability (WEP)

0.8

Controls exploitation intensity

Traveling distance rate (TDR)

1

Standard recommended value

Number of iterations

1000

Ensures convergence

VS-MLP

Swarm size

50–500

Population size for the algorithm

Social coefficient (c1)

1.5

Guides individual versus social learning

Cognitive coefficient (c2)

1.5

Standard for VS optimization

Max iterations

1000

Convergence criteria

BSA-MLP

Population size

50–500

Standard value in BSA applications

Step size

0.1

Controls search granularity

Visual parameter

0.2

Determines neighborhood visibility

Iterations

1000

Ensures convergence of the search