Abstract
The present study explores the mechanical, durability, and environmental performance of geopolymer concrete (GPC) synthesized using ferrosilicon slag (FS) and aluminum powder (AP) as sustainable binder constituents. Eight mixes were prepared by varying FS: AP ratios (100:0, 95:5, 90:10, 85:15) and activating them with 6 M and 9 M sodium hydroxide at a constant activator-to-binder ratio. Experimental tests included compressive, flexural, and split tensile strengths, water sorptivity, and rapid chloride penetration (RCPT). Results showed that increasing AP content improved workability up to an optimum of 10%, after which excessive porosity reduced strength. The 90% FS–10% AP mix at 9 M NaOH (M7) achieved the highest performance, yielding 53.2% higher compressive strength, 23.8% higher flexural strength, and 24.0% higher split tensile strength than the corresponding 6 M mix. Durability also improved significantly, with sorptivity reduced by 25.0% and RCPT charge by 52.9% at higher molarity. Machine learning (ML) models artificial neural networks (ANN), random forest (RF), and support vector regression (SVR) were trained to predict compressive strength, with RF achieving the best accuracy (R2 = 0.98). A cradle-to-gate carbon footprint analysis demonstrated that AP-free mixes had the lowest embodied CO2, whereas the optimal M7 mix provided the best balance between performance and sustainability. Overall, the study highlights the synergistic potential of FS and AP in geopolymer concretes and provides an integrated experimental–ML–carbon framework for designing high-performance, low-carbon GPC mixtures.
Data availability
The experimental data pertaining to the results submitted shall be provided upon request to the corresponding author.
References
Dighade, R. et al. Emission of carbon footprint from Building construction materials: A review. IOP Conf. Series: Earth Environ. Sci. https://doi.org/10.1088/1755-1315/1409/1/012010 (2024).
Chamasemani, N., Kelishadi, M., Mostafaei, H., Najvani, M. & Mashayekhi, M. Environmental impacts of reinforced concrete buildings: comparing common and sustainable materials: A case study. Constr. Mater. https://doi.org/10.3390/constrmater4010001 (2023).
Sizirici, B., Fseha, Y., Cho, C., Yildiz, I. & Byon, Y. A review of carbon footprint reduction in construction Industry, from design to operation. Materials. https://doi.org/10.3390/ma14206094 (2021).
Onat, N. & Kucukvar, M. Carbon footprint of construction industry: A global review and supply chain analysis. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2020.109783 (2020).
Osorio-Gomez, C., Alzate-Buitrago, A., Amariles-López, C., Aristizábal-Torres, D. & Mancilla-Rico, E. Interaction of life cycle assessment (LCA) and BIM in a construction project to reduce the environmental footprint. Civil Eng. J. https://doi.org/10.28991/cej-2025-011-01-08 (2025).
Labaran, Y., Mathur, V., Muhammad, S. & Musa, A. Carbon footprint management: A review of construction industry. Clean. Eng. Technol. https://doi.org/10.1016/j.clet.2022.100531 (2022).
Dolmatov, S., Kolesnikov, P. & Smertin, N. Methods for reducing the carbon footprint of industrial and construction facilities. IOP Conf. Series: Earth Environ. Sci. https://doi.org/10.1088/1755-1315/981/4/042005 (2022).
Yardimci, Y. & Kuruçay, E. LCA-TOPSIS integration for minimizing material waste in the construction sector: A BIM-Based Decision-Making. Buildings https://doi.org/10.3390/buildings14123919 (2024).
Akan, M., Dhavale, D. & Sarkis, J. Greenhouse gas emissions in the construction industry: an analysis and evaluation of a concrete supply chain. J. Clean. Prod.. https://doi.org/10.1016/J.JCLEPRO.2017.07.225 (2017).
Labaran, Y., Musa, A., Mathur, V. & Saini, G. Exploring the carbon footprint of nigeria’s construction sector: a quantitative insight. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-024-05111-5 (2024).
Yang, Z., Zhang, B., Yang, Y., Qin, B. & Wang, Z. Interprovincial inequality between economic benefit and carbon footprint: perspective from china’s construction industry. Environ. Impact Assess. Rev. https://doi.org/10.1016/j.eiar.2023.107293 (2024).
Chaudhury, S., Sharma, R., Thapliyal, U., Singh, L. & P., & Low-CO2 emission strategies to achieve net zero target in cement sector. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2023.137466 (2023).
Ahmad, M., Fernández-Jiménez, A., Chen, B., Leng, Z. & Dai, J. Low-carbon cementitious materials: Scale-up potential, environmental impact and barriers. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2024.139087 (2024).
Dunant, C., Joseph, S., Prajapati, R. & Allwood, J. Electric recycling of Portland cement at scale. Nature. https://doi.org/10.1038/s41586-024-07338-8 (2024).
Wang, W., Ye, M., Shi, Y. & Xiao, D. Plant-level intensity of energy and CO2 emissions for Portland cement in Guizhou of Southwest China 2019–2022. Sci. Data. https://doi.org/10.1038/s41597-024-03621-5 (2024).
Meng, D., Unluer, C., Yang, E. & Qian, S. Recent advances in magnesium-based materials: CO2 sequestration and utilization, mechanical properties and environmental impact. Cem. Concr. Compos. https://doi.org/10.1016/j.cemconcomp.2023.104983 (2023).
Ige,O., Olanrewaju, O., Duffy, K. & Collins, O. Environmental impact analysis of Portland cement (CEM1) using the midpoint method. Energies 15, 2708 (2022). https://doi.org/10.3390/en15072708
Sánchez, A., Ramos, V., Polo, M., Ramón, M. & Utrilla, J. Life cycle assessment of cement production with marble waste sludges. Int. J. Environ. Res. Public Health. https://doi.org/10.3390/ijerph182010968 (2021).
Tarpani, R. et al. Environmental assessment of cement production with added graphene. Clean. Environ. Syst. https://doi.org/10.1016/j.cesys.2024.100206 (2024).
Sousa, V., Bogas, J., Real, S. & Meireles, I. Industrial production of recycled cement: energy consumption and carbon dioxide emission Estimation. Environ. Sci. Pollut. Res.. https://doi.org/10.1007/s11356-022-20887-7 (2022).
Neupane, K. Evaluation of environmental sustainability of One-part geopolymer binder concrete. Clean. Mater. https://doi.org/10.1016/j.clema.2022.100138 (2022).
Singh, N. & Middendorf, B. Geopolymers as an alternative to Portland cement: An overview. Constr. Build. Mater.. https://doi.org/10.1016/j.conbuildmat.2019.117455 (2020).
Jalal, P., Srivastava, V. & Tiwari, A. Geopolymer concrete: an alternative to conventional concrete for sustainable construction. J. Environ. Nanatechnol. https://doi.org/10.13074/jent.2024.12.2441122 (2024).
Farooq, F. et al. GPCas sustainable material: A state of the Art review. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2021.124762 (2021).
Oyebisi, S. et al. Sustainability assessment of gpcsynthesized by slag and corncob Ash. Case Stud. Constr. Mater. https://doi.org/10.1016/j.cscm.2022.e01665 (2022).
Amran, Y., Alyousef, R., Alabduljabbar, H. & MohamedEl Clean production and properties of geopolymer concrete; A review. J. Clean. Prod.. https://doi.org/10.1016/j.jclepro.2019.119679 (2020).
Ikotun, J., Aderinto, G., Madirisha, M. & Katte, V. Geopolymer cement in pavement applications: bridging sustainability and performance. Sustainability https://doi.org/10.3390/su16135417 (2024).
Nodehi, M. & Taghvaee, V. Alkali-Activated materials and geopolymer: a review of common precursors and activators addressing circular economy. Circular Econ. Sustain.. https://doi.org/10.1007/s43615-021-00029-w (2021).
Ahmed, H. et al. GPCas a cleaner construction material: an overview on materials and structural performances. Clean. Mater. https://doi.org/10.1016/j.clema.2022.100111 (2022).
Verma, M. et al. Geopolymer concrete: A material for sustainable development in Indian construction industries. Crystals https://doi.org/10.3390/cryst12040514 (2022).
Meskhi, B. et al. Anal. Rev. Geopolymer Concrete: Retrospective Curr. Issues Mater.. https://doi.org/10.3390/ma16103792 (2023).
Amin,M., Elsakhawy, Y., El-hassan, K. & Abdelsalam, B. Behavior evaluation of sustainable high strength GPCbased on fly ash, metakaolin, and slag. Case Stud. Constr. Mater. 16, e00976 (2022). https://doi.org/10.1016/j.cscm.2022.e00976
Wasim, M., Ngo, T. & Law, D. A state-of-the-art review on the durability of GPCfor sustainable structures and infrastructure. Constr. Build. Mater. https://doi.org/10.1016/J.CONBUILDMAT.2021.123381 (2021).
Chen, K., Wu, D., Xia, L., Cai, Q. & Zhang, Z. GPCdurability subjected to aggressive environments – A review of influence factors and comparison with ordinary Portland cement. Constr. Build. Mater.. https://doi.org/10.1016/J.CONBUILDMAT.2021.122496 (2021).
Almutairi, A., Tayeh, B., Adesina, A., Isleem, H. & Zeyad, A. Potential applications of GPCin construction: A review. Case Stud. Constr. Mater. https://doi.org/10.1016/j.cscm.2021.e00733 (2021).
Delgado-Plana,P., Bueno-Rodríguez, S., Pérez-Villarejo, L. & Eliche-Quesada, D. Effect of Portland Cement Addition in Ferrosilicon Slag Alkali Activated Materials. Mater. Proc. 8, 122 (2022). https://doi.org/10.3390/materproc2022008122
Khoroshev, A., Makarevich, А., Chernyshev, S., Lesyuk, V. & Shishlov, А. Use of ferrosilicon slag in steel production. Metallurgist. https://doi.org/10.1007/s11015-022-01356-5 (2022).
Hou, Y., Zhang, G. & Chou, K. Reaction behavior of SiC with CaO–SiO2–Al2O3 slag. ISIJ Int. https://doi.org/10.2355/ISIJINTERNATIONAL.ISIJINT-2020-605 (2021).
Kim, H. & Ann, K. Applicability of ferrosilicon slag for a cementitious binder in concrete mix. Constr. Build. Mater.. https://doi.org/10.1016/j.conbuildmat.2020.121873 (2021).
Ahmed, M. et al. Fabrication of thermal insulation geopolymer bricks using ferrosilicon slag and alumina waste. Case Stud. Constr. Mater. https://doi.org/10.1016/j.cscm.2021.e00737 (2021).
Amin, M., Zeyad, A., Tayeh, B. & Agwa, I. Effect of ferrosilicon and silica fume on mechanical, durability, and microstructure characteristics of ultra high-performance concrete. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2021.126233 (2022).
Tayeh, B., Hakamy, A., Amin, M., Zeyad, A. & Agwa, I. Effect of air agent on mechanical properties and microstructure of lightweight gpcunder high temperature. Case Stud. Constr. Mater. https://doi.org/10.1016/j.cscm.2022.e00951 (2022).
Chen, Z. H., Ba, Y., Shao, N. & M., & Properties of alkali activated materials prepared with secondary aluminum Ash sintered powder. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2024.139516 (2025).
Zhang, S., Wang, K., Li, H., Zhang, X. & Jiang, Y. Novel SCMs produced by the calcination of secondary aluminium Dross with dolomite and their potential usage in cemented paste backfill. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2022.130119 (2023).
Singh, G. & Scrivener, K. Performance of limestone calcined clay cement (LC3)-Based lightweight blocks. RILEM Bookseries. (2020). https://doi.org/10.1007/978-981-15-2806-4_94
Hameed, S. et al. Effect of aluminium waste powder on the strength properties of cement mortar. Neutron 23, 1 (2023).
Gharieb, M. & Khater, H. Valorization study of mixing aluminum slag with binary geopolymer blends to produce lightweight geopolymer concrete. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2025.140288 (2025).
Abdellatief, M. et al. Physico-mechanical, thermal insulation properties, and microstructure of geopolymer foam concrete containing sawdust Ash and egg shell. J. Building Eng. https://doi.org/10.1016/j.jobe.2024.109374 (2024).
Sanjayan, J., Nazari, A., Chen, L. & Nguyen, G. Physical and mechanical properties of lightweight aerated geopolymer. Constr. Build. Mater. https://doi.org/10.1016/J.CONBUILDMAT.2015.01.043 (2015).
Font, A., Borrachero, M., Soriano, L., Monzó, J. & Payá, J. Geopolymer eco-cellular concrete (GECC) based on fluid catalytic cracking catalyst residue (FCC) with addition of recycled aluminium foil powder. J. Clean. Prod. https://doi.org/10.1016/J.JCLEPRO.2017.09.110 (2017).
Keawpapasson, P. et al. Metakaolin-Based porous geopolymer with aluminium powder. Key Eng. Mater. https://doi.org/10.4028/www.scientific.net/KEM.608.132 (2014).
Hajimohammadi, A., Ngo, T. & Mendis, P. How does aluminium foaming agent impact the geopolymer formation mechanism. Cement Concr. Compos.. https://doi.org/10.1016/J.CEMCONCOMP.2017.03.022 (2017).
Durak, U. The improvement of strength and microstructural properties of fly ash-based geopolymer by adding elemental aluminum powder. J. Mater. Cycles Waste Manage.. https://doi.org/10.1007/s10163-022-01520-8 (2022).
Hajimohammadi, A., Ngo, T. & Mendis, P. The effect of aluminium reaction on formation mechanism and structural properties of geopolymers. (2016).
Matei, E. et al. Ferrous industrial Wastes—Valuable resources for water and wastewater decontamination. Int. J. Environ. Res. Public Health. https://doi.org/10.3390/ijerph192113951 (2022).
Jiménez, A. et al. Synthesis of pollucite and analcime zeolites by recovering aluminum from a saline slag. J. Clean. Prod.. https://doi.org/10.1016/J.JCLEPRO.2021.126667 (2021).
Veliyev, E. & Aliyev, A. Design of a lightweight cementing material on basis of geopolymer and gas-forming agent. SOCAR Proceedings. (2023). https://doi.org/10.5510/ogp20230100813
Kanagaraj, B., Anand, N., Andrushia, A. D. & Lubloy, E. Investigation on engineering properties and micro-structure characteristics of low strength and high strength geopolymer composites subjected to standard temperature exposure. Case Stud. Constr. Mater. https://doi.org/10.1016/j.cscm.2022.e01608 (2022).
Mostafa, S., Agwa, I., Elboshy, B., Zeyad, A. & Hassan, A. The effect of lightweight GPC containing air agent on Building envelope performance and internal thermal comfort. Case Stud. Constr. Mater. https://doi.org/10.1016/j.cscm.2024.e03365 (2024).
Kioupis, D., Skaropoulou, A., Tsivilis, S. & Kakali, G. Development of lightweight geopolymer composites by combining various CDW streams. Ceramics https://doi.org/10.3390/ceramics6020048 (2023).
Lima, J. et al. Use of rice husk Ash to produce alternative sodium silicate for geopolymerization reactions. Cerâmica https://doi.org/10.1590/0366-69132021673812891 (2021).
Hou, D. et al. Molecular insights into the reaction process of Alkali-Activated Metakaolin by sodium hydroxide. Langmuir: ACS J. Surf. Colloids. https://doi.org/10.1021/acs.langmuir.2c01631 (2022).
Tong, K., Vinai, R. & Soutsos, M. Use of Vietnamese rice husk Ash for the production of sodium silicate as the activator for alkali-activated binders. J. Clean. Prod. https://doi.org/10.1016/J.JCLEPRO.2018.08.025 (2018).
Karaaslan, C. & Yener, E. The effect of alkaline activator components on the properties of fly Ash added pumice based geopolymer. J. Inst. Sci. Technol. https://doi.org/10.21597/JIST.840872 (2021).
Li, H., Li, J. & Lu, Z. Effect of Na/Al on formation, structures and properties of Metakaolin based Na-geopolymer. Constr. Build. Mater. https://doi.org/10.1016/J.CONBUILDMAT.2019.07.171 (2019).
Rihan, M., Alahmari, T., Onchiri, R., Gathimba, N. & Sabuni, B. Impact of alkaline concentration on the mechanical properties of GPCMade up of fly Ash and sugarcane Bagasse Ash. Sustainability https://doi.org/10.3390/su16072841 (2024).
Venkatesan, G., Alengaram, U., Ibrahim, S. & Ibrahim, M. Effect of fly Ash characteristics, sodium-based alkaline activators, and process variables on the compressive strength of siliceous fly Ash geopolymers with microstructural properties: A comprehensive review. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2024.136808 (2024).
Shilar,F., Ganachari, S., Patil, V., Khan, T. & Dawood, S. Molarity activity effect on mechanical and microstructure properties of geopolymer concrete: A review. Case Stud. Constr. Mater. 16, e01014 (2022). https://doi.org/10.1016/j.cscm.2022.e01014
Bidwe,S. S. & Hamane, A. A. Effect of different molarities of sodium hydroxide solution on the strength of geopolymer concrete. Am. J. Eng. Res. 4, 139 (2015). https://doi.org/10.6084/M9.FIGSHARE.1390492.V1
Pane,I., Imran, I. & Budiono, B. Compressive strength of fly ash-based GPCwith a variable of sodium hydroxide (NaOH) solution molarity. MATEC Web Conf. 147, 01004 (2018). https://doi.org/10.1051/MATECCONF/201814701004
Mortar,N., Kamarudin, H., Rafiza, R., Meor, T. & Rosnita, M. Compressive strength of fly ash GPCby varying sodium hydroxide molarity and aggregate to binder ratio. ioP Conf. Series: Mater. Sci. Eng. 864, 012037 (2020). https://doi.org/10.1088/1757-899X/864/1/012037
Memon, F. et al. Effect of sodium hydroxide concentration on fresh properties and compressive strength of self-compacting geopolymer concrete. J. Eng. Sci. Technol. 8, 44 (2013).
Reddy, S., Krishna, V., Rao, S. & Shrihari, S. Effect of molarity of sodium hydroxide and molar ratio of alkaline activator solution on the strength development of geopolymer concrete. E3S Web Conferences. https://doi.org/10.1051/e3sconf/202130901058 (2021).
Amarender, R. & Rayana, H. Study on the molarity effect of sodium hydroxide on gpcincorporating Nanosilica. J. Phys: Conf. Ser. https://doi.org/10.1088/1742-6596/2779/1/012040 (2024).
Ganesh, A. et al. Effect of molarity of sodium hydroxide solution over GGBS-based self compacting geopolymer concrete. E3S Web Conferences. https://doi.org/10.1051/e3sconf/202452901004 (2024).
Lavanya, G. & Jegan, J. Durability study on high calcium fly Ash based geopolymer concrete. Adv. Mater. Sci. Eng. https://doi.org/10.1155/2015/731056 (2015).
Nikolov, A. Alkali-activated geopolymers based on iron-rich slag from copper industry. IOP Conf. Series: Mater. Sci. Eng. https://doi.org/10.1088/1757-899X/951/1/012006 (2020).
Simon, S. et al. The fate of iron during the alkali-activation of synthetic (CaO‐)FeOx‐SiO2 slags: an Fe K‐edge XANES study. J. Am. Ceram. Soc.. https://doi.org/10.1111/JACE.15354 (2018).
Nikolov, A. Alkali and acid activated geopolymers based on iron-silicate fines - by-product from copper industry. Int. Sci. J. Mach. Technol. Mater. 14, 37 (2020).
Kanagaraj, B., Lubloy, E., Anand, N., Hlavicka, V. & Kiran, T. Investigation of physical, chemical, mechanical, and microstructural properties of cement-less concrete–state-of-the-art review. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2022.130020 (2023).
Wu, J. Study on the effect of different air-entraining agents on the properties of concrete. E3S Web Conferences. https://doi.org/10.1051/e3sconf/202561802001 (2025).
Song, X., Ng, S., Ni, T., Wang, Y. & Ke, F. Effect of air entraining agents on the air void structure of concrete. J. Phys: Conf. Ser.. https://doi.org/10.1088/1742-6596/2011/1/012051 (2021).
Yang, Y. Study on the influence of Air-Entraining agent on concrete pore structure based on nuclear magnetic resonance technology. Acad. J. Sci. Technol. https://doi.org/10.54097/evveb837 (2025).
Paruthi, S., Rahman, I., Husain, A., Hasan, M. A. & Khan, A. H. Effects of chemicals exposure on the durability of geopolymer concrete incorporated with silica fumes and nano-sized silica at varying curing temperatures. Materials https://doi.org/10.3390/ma16186332 (2023).
Lee, Y. H. et al. Thermal performance of structural lightweight concrete composites for potential energy saving. Crystals https://doi.org/10.3390/cryst11050461 (2021).
Chaabene, W., Flah, M. & Nehdi, M. Machine learning prediction of mechanical properties of concrete: critical review. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2020.119889 (2020).
Vatin, N., Hematibahar, M. & Gebre, T. Chopped and minibars reinforced high-performance concrete: machine learning prediction of mechanical properties. Front. Built Environ. https://doi.org/10.3389/fbuil.2025.1558394 (2025).
Asteris, P., Skentou, A., Bardhan, A., Samui, P. & Pilakoutas, K. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models. Cem. Concr. Res. https://doi.org/10.1016/J.CEMCONRES.2021.106449 (2021).
Imran, M., Amjad, H., Khan, S. & Ali, S. Machine learning assisted prediction of the mechanical properties of carbon nanotube-incorporated concrete. Struct. Concrete. https://doi.org/10.1002/suco.202400727 (2024).
Liu, Y. High-Performance concrete strength prediction based on machine learning. Comput. Intell. Neurosci.. https://doi.org/10.1155/2022/5802217 (2022).
Kashem, A. et al. Hybrid data-driven approaches to predicting the compressive strength of ultra-high-performance concrete using SHAP and PDP analyses. Case Stud. Constr. Mater. https://doi.org/10.1016/j.cscm.2024.e02991 (2024).
Pal, A., Ahmed, K., Hossain, F. & Alam, M. Machine learning models for predicting compressive strength of fiber-reinforced concrete containing waste rubber and recycled aggregate. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2023.138673 (2023).
Hosseinzadeh, M., Dehestani, M. & Hosseinzadeh, A. Prediction of mechanical properties of recycled aggregate fly Ash concrete employing machine learning algorithms. J. Building Eng. https://doi.org/10.1016/j.jobe.2023.107006 (2023).
Çiftçioğlu, Ӧ., Kazemi, F. & Shafighfard, T. Grey Wolf optimizer integrated within boosting algorithm: application in mechanical properties prediction of ultra high-performance concrete including carbon nanotubes. Appl. Mater. Today. https://doi.org/10.1016/j.apmt.2025.102601 (2025).
Moein, M. et al. Predictive models for concrete properties using machine learning and deep learning approaches: A review. J. Building Eng. https://doi.org/10.1016/j.jobe.2022.105444 (2022).
Koya, B., Aneja, S., Gupta, R. & Valeo, C. Comparative analysis of different machine learning algorithms to predict mechanical properties of concrete. Mech. Adv. Mater. Struct.. https://doi.org/10.1080/15376494.2021.1917021 (2021).
Zhang, L. & Zhao, Y. Calculation of the mechanical properties of high-performance concrete employing hybrid and ensemble‐hybrid techniques. Struct. Concrete. https://doi.org/10.1002/suco.202300418 (2024).
Kumar, R., Rai, B. & Samui, P. Prediction of mechanical properties of high-performance concrete and ultrahigh‐performance concrete using soft computing techniques: A critical review. Struct. Concrete. https://doi.org/10.1002/suco.202400188 (2024).
Hematibahar, M. et al. Analysis of models to predict mechanical properties of High-Performance and Ultra-High-Performance concrete using machine learning. J. Compos. Sci. https://doi.org/10.3390/jcs8080287 (2024).
Hafez, H., Teirelbar, A., Kurda, R., Tošić, N. & De La Fuente, A. Pre-bcc: A novel integrated machine learning framework for predicting mechanical and durability properties of blended cement concrete. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2022.129019 (2022).
Hosseinzadeh, M., Samadvand, H., Hosseinzadeh, A., Mousavi, S. & Dehestani, M. Concrete strength and durability prediction through deep learning and artificial neural networks. Front. Struct. Civil Eng. https://doi.org/10.1007/s11709-024-1124-9 (2024).
Zhang, M. & Kang, R. Machine learning methods for predicting the durability of concrete materials: A review. Adv. Cem. Res. https://doi.org/10.1680/jadcr.24.00133 (2025).
Gamil,Y. Machine learning in concrete technology: A review of current researches, trends, and applications. Front. Built Environ. 9, 1145591 (2023). https://doi.org/10.3389/fbuil.2023.1145591
Arasteh-Khoshbin, O., Seyedpour, S., Mandl, L., Lambers, L. & Ricken, T. Comparing durability and compressive strength predictions of hyperoptimized random forests and artificial neural networks on a small dataset of concrete containing nano SiO2 and RHA. Eur. J. Environ. Civil Eng.. https://doi.org/10.1080/19648189.2024.2393881 (2024).
Upreti, K. et al. Prediction of mechanical strength by using an artificial neural network and random forest algorithm. J. Nanomaterials. https://doi.org/10.1155/2022/7791582 (2022).
Wang, L., Wu, X., Chen, H. & Zeng, T. Prediction of impermeability of the concrete structure based on random forest and support vector machine. IOP Conf. Series: Earth Environ. Sci.. https://doi.org/10.1088/1755-1315/552/1/012004 (2020).
Xu, Y. et al. Computation of High-Performance concrete compressive strength using standalone and ensembled machine learning techniques. Materials. https://doi.org/10.3390/ma14227034 (2021).
Kushal, B., Goud, K., Kumar, K. & Mohan, U. Performance prediction of Eco-Friendly concrete with artificial neural networks (ANNs). E3S Web Conferences. https://doi.org/10.1051/e3sconf/202459601021 (2024).
Farooq, F. et al. A comparative study of random forest and genetic engineering programming for the prediction of compressive strength of high strength concrete (HSC). Appl. Sci. https://doi.org/10.3390/app10207330 (2020).
Chen, P., Wang, H., Cao, S. & Lv, X. Prediction of mechanical behaviours of FRP-Confined circular concrete columns using artificial neural network and support vector regression: modelling and performance evaluation. Materials. https://doi.org/10.3390/ma15144971 (2022).
Lunardi, L., Cornélio, P., Prado, L., Nogueira, C. & Félix, E. Hybrid machine learning model for predicting the fatigue life of plain concrete under Cyclic compression. Buildings https://doi.org/10.3390/buildings15101618 (2025).
Pfeiffer, O. et al. Bayesian design of concrete with amortized Gaussian processes and multi-objective optimization. Cem. Concr. Res. https://doi.org/10.1016/j.cemconres.2023.107406 (2024).
Yuan, Z., Zheng, W. & Qiao, H. Machine learning based optimization for mix design of manufactured sand concrete. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2025.140256 (2025).
Chen, B. et al. Optimization of high-performance concrete mix ratio design using machine learning. Eng. Appl. Artif. Intell.. https://doi.org/10.1016/j.engappai.2023.106047 (2023).
Wang, M. et al. Multi-objective optimization of ultra-high performance concrete based on life-cycle assessment and machine learning methods. Front. Struct. Civil Eng. https://doi.org/10.1007/s11709-025-1152-0 (2025).
Wakjira, T., Kutty, A. & Alam, M. A novel framework for developing environmentally sustainable and cost-effective ultra-high-performance concrete (UHPC) using advanced machine learning and multi-objective optimization techniques. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2024.135114 (2024).
Liu, J., Liu, F. & Wang, L. Automated, economical, and environmentally-friendly asphalt mix design based on machine learning and multi-objective grey Wolf optimization. J. Traffic Transp. Eng. (English Edition). https://doi.org/10.1016/j.jtte.2023.10.002 (2024).
Pham, T., Le-Hong, T. & Tran, X. Efficient Estimation and optimization of Building costs using machine learning. Int. J. Constr. Manag.. https://doi.org/10.1080/15623599.2021.1943630 (2021).
Arabani, M., Effati, M., Safari, M., Shalchian, M. M. & Hassanjani, M. H. The comprehensive review on the mechanisms and performance of different bio-extenders in the bitumen. Int. J. Pavement Res. Technol. https://doi.org/10.1007/s42947-024-00457-5 (2024).
Hassanjani, M. H., Arabani, M., Shalchian, M. M. & Amiri, A. Evaluation of different biomass conversion methods to bio-oil for partial replacement of petroleum bitumen: analysis of effects and implications. Int. J. Pavement Eng. https://doi.org/10.1080/10298436.2025.2472860 (2025).
Arabani, M., Hassanjani, M. H., Farkhondeh, J. & Taleghani, M. Y. Enhancing mechanical properties of hot mix asphalt with Olive kernel ash: A sustainable modifier. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2024.138740 (2024).
Arabani, M., Sadeghnejad, M., Haghanipour, J. & Hassanjani, M. H. The influence of rice Bran oil and nano-calcium oxide into bitumen as sustainable modifiers, case stud. Construct Mater. https://doi.org/10.1016/j.cscm.2024.e03458 (2024).
McLellan, B. C., Williams, R. P., Lay, J., van Riessen, A. & Corder, G. D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2011.02.010 (2011).
Norgate, T. E. & Rankin, W. J. The role of metals in sustainable development. In: Green Processing 2002. Carlton, Australia: AusIMM; (2002).
Turner, L. K. & Collins, F. G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2013.01.023 (2013).
Duxson, P., Provis, J. L., Lukey, G. C. & van Deventer, J. S. J. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr Res. https://doi.org/10.1016/j.cemconres.2007.08.018 (2007).
Flower, D. J. M. & Sanjayan, J. G. Greenhouse gas emissions due to concrete manufacture. Int. J. Life Cycle Assess. https://doi.org/10.1065/lca2007.05.327 (2007).
Funding
The authors declare that no funding/grants were received during this project and preparation of this manuscript.
Author information
Authors and Affiliations
Contributions
**K. Narshimha Raju** : Investigation, methodology, visualization, writing—original draft.**G. K. Arunvivek** : conceptualization, methodology, validation, review and editing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Raju, K.N., Arunvivek, G.K. Mechanical and durability performance prediction of geopolymer incorporating ferrosilicon slag and aluminum powder using machine learning techniques. Sci Rep (2026). https://doi.org/10.1038/s41598-025-32654-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-32654-y