Table 6 Discrimination of LightGBM models by input modality.

From: Multimodal machine learning for 5-year mortality prediction after percutaneous coronary intervention

Input modalities

AUC-ROC

PR-AUC

F1macro

Tabular only

0.789 (0.76–0.82)

0.437 (0.39–0.48)

0.657 (0.63–0.68)

Visual only

0.682 (0.64–0.72)

0.297 (0.25–0.35)

0.594 (0.55–0.64)

Text only

0.652 (0.60–0.70)

0.246 (0.21–0.29)

0.476 (0.43–0.52)

Tabular + Visual

0.810 (0.78–0.84)

0.458 (0.41–0.51)

0.662 (0.63–0.69)

Tabular + Text

0.802 (0.77–0.83)

0.463 (0.41–0.52)

0.674 (0.66–0.72)

Visual + Text

0.708 (0.66–0.75)

0.294 (0.25–0.35)

0.594 (0.55–0.64)

All three

0.814 (0.79–0.84)

0.472 (0.42–0.52)

0.682 (0.65–0.71)

  1. Values are point estimates with 95 % bootstrap CIs. PR-AUC is reported in addition to AUC-ROC because the positive-class prevalence is 11.6%.