Table 4 Training loss with varying numbers of convolutional layer and augmentation, presented using the common logarithm.

From: Exploring potential of Turing pattern classification through convolution maps

 

L1

L1-Aug

L2

L2-Aug

L3

L3-Aug

min

\(-4.207\)

\(-4.101\)

\(-4.761\)

\(-4.741\)

\(-5.008\)

\(-5.080\)

max

\(-4.174\)

\(-3.999\)

\(-4.471\)

\(-3.028\)

\(-3.030\)

\(-3.028\)