Table 5 Performance of radiomic, deep learning, and combined Rad-DL models in quantitative prediction of AMH.
Model | R2 | MAE | MSE | MedAE | EV |
|---|---|---|---|---|---|
Training cohort (n = 210) | |||||
Radiomics | 0.520 | 1.488 | 4.392 | 1.126 | 0.520 |
Deep learning | 0.950 | 0.532 | 0.460 | 0.431 | 0.951 |
Rad-DL | 0.962 | 0.381 | 0.344 | 0.212 | 0.972 |
Internal test cohort (n = 91) | |||||
Radiomics | 0.323 | 1.668 | 4.931 | 1.315 | 0.345 |
Deep learning | 0.591 | 1.342 | 2.977 | 1.026 | 0.595 |
Rad-DL | 0.550 | 1.368 | 3.279 | 1.042 | 0.551 |
External test cohort (n = 94) | |||||
Radiomics | 0.420 | 1.800 | 5.729 | 1.411 | 0.494 |
Deep learning | 0.352 | 1.589 | 6.405 | 1.030 | 0.352 |
Rad-DL | 0.509 | 1.553 | 4.851 | 1.232 | 0.523 |