Table 4 Performance comparison of different traditional deep learning models and their combinations with the proposed method (Accuracy, Precision, Recall, F1-Score, and AUC on four target domains).

From: Research on cross-dataset cardiac signal domain generalization and feature interpretability

Method

Target domain: MIT-BIH Sup arrhythmia

Target domain: MIT-BIH arrhythmia

Target domain: INCART

Target domain: SCD-Holter

Acc

Precision

Recall

F1-Score

AUC

Acc

Precision

Recall

F1-Score

AUC

Acc

Precision

Recall

F1-Score

AUC

Acc

Precision

Recall

F1-Score

AUC

MLP

0.365

0.462

0.428

0.444

0.538

0.622

0.741

0.648

0.691

0.731

0.745

0.856

0.782

0.818

0.894

0.471

0.612

0.505

0.553

0.562

+Ours

0.402

0.495

0.462

0.478

0.617

0.653

0.766

0.671

0.716

0.786

0.781

0.874

0.803

0.837

0.911

0.502

0.641

0.523

0.579

0.637

LSTM

0.389

0.471

0.439

0.454

0.554

0.641

0.755

0.662

0.706

0.758

0.768

0.862

0.789

0.824

0.902

0.486

0.624

0.511

0.562

0.578

+Ours

0.418

0.502

0.471

0.486

0.629

0.672

0.781

0.689

0.734

0.811

0.803

0.883

0.815

0.848

0.920

0.516

0.651

0.537

0.590

0.646

1DCNN

0.374

0.468

0.433

0.450

0.541

0.636

0.749

0.657

0.701

0.748

0.752

0.859

0.785

0.820

0.898

0.479

0.618

0.508

0.559

0.567

+Ours

0.409

0.497

0.466

0.481

0.622

0.666

0.774

0.684

0.727

0.799

0.789

0.878

0.807

0.841

0.917

0.509

0.645

0.528

0.583

0.639