Table 4 Performance comparison of different traditional deep learning models and their combinations with the proposed method (Accuracy, Precision, Recall, F1-Score, and AUC on four target domains).
From: Research on cross-dataset cardiac signal domain generalization and feature interpretability
Method | Target domain: MIT-BIH Sup arrhythmia | Target domain: MIT-BIH arrhythmia | Target domain: INCART | Target domain: SCD-Holter | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | Precision | Recall | F1-Score | AUC | Acc | Precision | Recall | F1-Score | AUC | Acc | Precision | Recall | F1-Score | AUC | Acc | Precision | Recall | F1-Score | AUC | |
MLP | 0.365 | 0.462 | 0.428 | 0.444 | 0.538 | 0.622 | 0.741 | 0.648 | 0.691 | 0.731 | 0.745 | 0.856 | 0.782 | 0.818 | 0.894 | 0.471 | 0.612 | 0.505 | 0.553 | 0.562 |
+Ours | 0.402 | 0.495 | 0.462 | 0.478 | 0.617 | 0.653 | 0.766 | 0.671 | 0.716 | 0.786 | 0.781 | 0.874 | 0.803 | 0.837 | 0.911 | 0.502 | 0.641 | 0.523 | 0.579 | 0.637 |
LSTM | 0.389 | 0.471 | 0.439 | 0.454 | 0.554 | 0.641 | 0.755 | 0.662 | 0.706 | 0.758 | 0.768 | 0.862 | 0.789 | 0.824 | 0.902 | 0.486 | 0.624 | 0.511 | 0.562 | 0.578 |
+Ours | 0.418 | 0.502 | 0.471 | 0.486 | 0.629 | 0.672 | 0.781 | 0.689 | 0.734 | 0.811 | 0.803 | 0.883 | 0.815 | 0.848 | 0.920 | 0.516 | 0.651 | 0.537 | 0.590 | 0.646 |
1DCNN | 0.374 | 0.468 | 0.433 | 0.450 | 0.541 | 0.636 | 0.749 | 0.657 | 0.701 | 0.748 | 0.752 | 0.859 | 0.785 | 0.820 | 0.898 | 0.479 | 0.618 | 0.508 | 0.559 | 0.567 |
+Ours | 0.409 | 0.497 | 0.466 | 0.481 | 0.622 | 0.666 | 0.774 | 0.684 | 0.727 | 0.799 | 0.789 | 0.878 | 0.807 | 0.841 | 0.917 | 0.509 | 0.645 | 0.528 | 0.583 | 0.639 |