Table 1 Comparison of fusion model research in marine and environmental prediction.

From: Marine fishery resource dynamic prediction based on CNN-XGBoost fusion model

Study

Model architecture

Application domain

Dataset size

Key performance

Limitations addressed

Li et al. (2017)27

CNN + XGBoost

Social media popularity

432 K images

Spearman’s ρ: 0.7406

Feature extraction + classification

Shi et al. (2024)28

CNN-LSTM + Attention

Fishing effort prediction

1,899 vessels

Error ratio: 5.6%

Spatiotemporal dynamics

Xu et al. (2023)29

LSTM

Tuna CPUE prediction

15-year record

High accuracy

Temporal dependencies

Zhang et al. (2017)21

ConvLSTM

Sea surface temperature

Multi-year

-

Spatial-temporal patterns

Thongsuwan et al. (2021)30

CNN + XGBoost

Nuclear engineering

-

Superior to standalone

Classification tasks

Titouni et al. (2025)31

CNN + XGBoost

Wireless communication

Modulation dataset

Accuracy: 98.3%

Signal classification

Our study

CNN + XGBoost Fusion

Marine fishery resources

3.8 M records

RMSE: 2.847, R²: 0.846

Temporal + heterogeneous features