Table 3 Model parameter configuration for CNN-XGBoost fusion architecture.

From: Marine fishery resource dynamic prediction based on CNN-XGBoost fusion model

Parameter category

Parameter name

Parameter value

CNN architecture

Convolutional Layers

3 layers

CNN filters

Filter Numbers

[32, 64, 128]

CNN kernels

Kernel Sizes

[3, 5]

CNN regularization

Dropout Rates

[0.3, 0.5]

XGBoost trees

Maximum Depth

6

XGBoost learning

Learning Rate

0.1

XGBoost ensemble

Number of Estimators

500

XGBoost regularization

L2 Regularization

0.01