Table 3 Results achieved using DXGBA and XGBoost with different sampling techniques (Bold values represent the highest performance).

From: Customs fraud detection using a gradient boosting approach for joint classification and risk estimation

Data

Model

Classification

Regression

Accuracy

Precision

Recall

F1-Score

AUC

MAE

MSE

Without SMOTE

XGBoost

0.8224

0.8446

0.2169

0.3452

0.8176

0.0008

0.000059

DXGBA

0.8244

0.8589

0.2227

0.3536

0.8212

0.0006

0.000053

SMOTE Balanced Resampling

XGBoost

0.8045

0.6330

0.2236

0.3301

0.7618

0.0008

0.000059

DXGBA

0.8053

0.6351

0.2306

0.3383

0.7692

0.0006

0.000052

Resample by 10% SMOTE

XGBoost

0.8197

0.7583

0.2411

0.3657

0.8012

0.0008

0.000059

DXGBA

0.8210

0.7603

0.2489

0.3749

0.8050

0.0006

0.000053

Resample by 15% SMOTE

XGBoost

0.8112

0.7574

0.1846

0.2966

0.7835

0.0008

0.000059

DXGBA

0.8130

0.7709

0.1903

0.3051

0.7904

0.0006

0.000053

Resample by 30% SMOTE

XGBoost

0.8113

0.7037

0.2172

0.3318

0.7841

0.0008

0.000059

DXGBA

0.8137

0.7196

0.2243

0.3420

0.7859

0.0006

0.000052

Resample by 50% SMOTE

XGBoost

0.8077

0.6709

0.2134

0.3237

0.7703

0.0008

0.000059

DXGBA

0.8111

0.6926

0.2249

0.3394

0.7786

0.0006

0.000053

RU

XGBoost

0.6629

0.3601

0.7234

0.4808

0.7558

0.0022

0.000057

DXGBA

0.6673

0.3639

0.7242

0.4843

0.7608

0.0015

0.000051

Resample by 10% SMOTE + RU

XGBoost

0.7175

0.4007

0.6225

0.4875

0.7592

0.0007

0.000053

DXGBA

0.7194

0.4039

0.6305

0.4923

0.7638

0.0007

0.000049

Resample by 15% SMOTE + RU

XGBoost

0.7356

0.4169

0.5639

0.4793

0.7561

0.0008

0.000059

DXGBA

0.7387

0.4229

0.5774

0.4881

0.7619

0.0006

0.000054

Resample by 30% SMOTE + RU

XGBoost

0.7784

0.4847

0.4218

0.4508

0.7528

0.0008

0.000059

DXGBA

0.7817

0.4936

0.4305

0.4598

0.7624

0.0006

0.000053

Resample by 50% SMOTE + RU

XGBoost

0.8014

0.5765

0.2996

0.3943

0.7634

0.0009

0.000059

DXGBA

0.8030

0.5819

0.3108

0.4051

0.7675

0.0007

0.000052