Table 7 Performance comparison across datasets and recent state-of-the-art methods.

From: Advancing skin cancer diagnosis with deep learning and attention mechanisms

Model

Dataset

Dice score

Accuracy (%)

Sensitivity (%)

Precision (%)

F1-Score (%)

Proposed Model

HAM10000 (Original)

0.988

97.8

98.3

98.1

98.2

ISIC (Preliminary)

0.91

91.2

90.7

92.5

91.0

PH2 (Preliminary)

0.933

93.5

92.0

94.0

93.3

UNet

HAM10000 (Original)

0.850

88.4

85.5

85.2

85.3

ISIC (Preliminary)

0.78

84.5

83.2

81.3

82.1

PH2 (Preliminary)

0.80

85.2

84.0

82.5

83.2

DenseNet

HAM10000 (Original)

0.870

90.1

88.2

89.5

88.9

ISIC (Preliminary)

0.83

88.2

86.5

87.8

87.1

PH2 (Preliminary)

0.85

89.0

87.4

88.2

87.8

Attention UNet

HAM10000 (Original)

0.920

94.0

93.0

93.4

93.2

ISIC (Preliminary)

0.85

89.5

87.8

89.0

88.4

PH2 (Preliminary)

0.88

90.3

89.5

90.2

89.9

UNet++

HAM10000 (Original)

0.930

94.5

94.0

94.8

94.3

ISIC (Preliminary)

0.87

92.0

90.0

91.2

90.6

PH2 (Preliminary)

0.90

92.8

91.6

92.2

91.9

TransUNet

HAM10000 (Original)

0.950

95.2

94.7

94.9

94.8

ISIC (Preliminary)

0.88

90.0

88.2

89.5

88.8

PH2 (Preliminary)

0.91

93.1

92.4

93.0

92.7