Table 5 Existing equations for flexural capacity of beams.
From: Rebar free high performance ductile concrete beams powered by CFRP and post-tensioning
Reference | Predicting flexural models | |
|---|---|---|
Bare beam | ACI 318 − 1923 | \(\:{M}_{0}={A}_{s}{f}_{y}(d-a/2)\) |
ACI 544.1R24 | \(\:{M}_{f}={M}_{0}+{\lambda\:}_{f}{V}_{f}{f}_{f}\) | |
JSCE (2007)18 | \(\:{M}_{0}=0.9{A}_{s}{f}_{y}d\) | |
fib Model Code 201025 | \(\:{M}_{f}={M}_{0}+{\lambda\:}_{f}{V}_{f}{f}_{f}\left({l}_{f}/{d}_{f}\right)d\) | |
RILEM TC 162-TDF (2003)26 | \(\:{M}_{f}={M}_{0}+{\lambda\:}_{f}{V}_{f}{f}_{f}\left({l}_{f}/{d}_{f}\right)\) | |
JSCE-SF4 (2002)27 | \(\:{M}_{f}={M}_{0}+{\lambda\:}_{f}{V}_{f}{f}_{f}\) | |
Single-layer CFRP | ACI 440.2R-1729 | \(\:{M}_{n}={M}_{0}+{A}_{f}{f}_{fe}(d-{a}_{f}/2)\) |
FIB Bulletin 1428 | \(\:{M}_{n}={M}_{0}+{A}_{f}{f}_{fe}(d-{a}_{f}/2)\) | |
Eurocode 2 & TR55 | \(\:{M}_{n}={M}_{0}+{A}_{f}{E}_{f}{\epsilon\:}_{f}(d-{a}_{f}/2)\) | |
JSCE-SF4 (2002)27 | \(\:{M}_{n}={M}_{0}+{A}_{f}{f}_{fu}(d-{a}_{f}/2)\) | |
Multi-layers CFRP | ACI 440.2R-1729 | \(\:{M}_{n}={M}_{0}+\sum\:_{i}\left({A}_{f.i}{f}_{fd.i}\left(d-a/2\right)\right)\) |
fib Bulletin 1428 | \(\:{M}_{n}={M}_{0}+\sum\:_{i}\left({A}_{f.i}{f}_{fd.i}{d}_{i}\right)\) | |
Post-tensioning | ACI 318 − 1923 | \(\:{M}_{n}={M}_{0}+{M}_{PT}\) \(\:{M}_{PT}={A}_{p}{f}_{p.\:effective}(d-\frac{{e}_{p}}{2})\) \(\:{f}_{p.\:effective}=\eta\:{\times\:f}_{pu}\) \(\:\eta\:=0.60\:for\:60\%\:post-tensioning\) \(\:\eta\:=0.80\:for\:80\%\:post-tensioning\) |