Table 4 Comparative study of the PASLR-DDPFEM technique with existing models.

From: Improving sign Language recognition system for assisting deaf and dumb people using pathfinder algorithm with representation learning model

Methodology

\(\:\varvec{A}\varvec{c}\varvec{c}{\varvec{u}}_{\varvec{y}}\)

\(\:\varvec{P}\varvec{r}\varvec{e}{\varvec{c}}_{\varvec{n}}\)

\(\:\varvec{S}\varvec{e}\varvec{n}{\varvec{s}}_{\varvec{y}}\)

\(\:\varvec{S}\varvec{p}\varvec{e}{\varvec{c}}_{\varvec{y}}\)

\(\:\varvec{F}{1}_{\varvec{S}\varvec{c}\varvec{o}\varvec{r}\varvec{e}}\)

CNN Classifier

95.54

81.69

76.33

93.95

75.21

VGG16 Method

89.00

81.59

77.28

90.94

81.33

EfficientNet V2

86.92

75.28

81.09

95.38

76.67

MobileNetV2

88.55

82.73

84.00

99.12

77.20

SignLan-Net

84.72

77.94

81.80

96.63

75.86

Faster R-CNN

95.87

78.55

76.58

97.60

77.49

Inception V3

91.66

81.84

83.95

92.09

78.24

PASLR-DDPFEM

98.80

84.44

84.42

99.38

84.42