Table 6 Error analysis of the PASLR-DDPFEM methodology with existing models.

From: Improving sign Language recognition system for assisting deaf and dumb people using pathfinder algorithm with representation learning model

Methodology

\(\:\varvec{A}\varvec{c}\varvec{c}{\varvec{u}}_{\varvec{y}}\)

\(\:\varvec{P}\varvec{r}\varvec{e}{\varvec{c}}_{\varvec{n}}\)

\(\:\varvec{S}\varvec{e}\varvec{n}{\varvec{s}}_{\varvec{y}}\)

\(\:\varvec{S}\varvec{p}\varvec{e}{\varvec{c}}_{\varvec{y}}\)

\(\:\varvec{F}{1}_{\varvec{S}\varvec{c}\varvec{o}\varvec{r}\varvec{e}}\)

CNN Classifier

4.46

18.31

23.67

6.05

24.79

VGG16 Method

11.00

18.41

22.72

9.06

18.67

EfficientNet V2

13.08

24.72

18.91

4.62

23.33

MobileNetV2

11.45

17.27

16.00

0.88

22.80

SignLan-Net

15.28

22.06

18.20

3.37

24.14

Faster R-CNN

4.13

21.45

23.42

2.40

22.51

Inception V3

8.34

18.16

16.05

7.91

21.76

PASLR-DDPFEM

1.20

15.56

15.58

0.62

15.58