Table 7 Comparative performance evaluation of the PASLR-DDPFEM technique through ablation study against existing models.
Methodology | \(\:\varvec{A}\varvec{c}\varvec{c}{\varvec{u}}_{\varvec{y}}\) | \(\:\varvec{P}\varvec{r}\varvec{e}{\varvec{c}}_{\varvec{n}}\) | \(\:\varvec{S}\varvec{e}\varvec{n}{\varvec{s}}_{\varvec{y}}\) | \(\:\varvec{S}\varvec{p}\varvec{e}{\varvec{c}}_{\varvec{y}}\) | \(\:\varvec{F}{1}_{\varvec{S}\varvec{c}\varvec{o}\varvec{r}\varvec{e}}\) |
|---|---|---|---|---|---|
ENN + GF + SE-Densenet (Without PFA Hyperparameter tuning process) | 98.18 | 83.79 | 83.65 | 98.77 | 83.71 |
PASLR-DDPFEM (ENN with GF preprocessing and SE-DenseNet feature extraction and PFA hyperparameter tuning process) | 98.80 | 84.44 | 84.42 | 99.38 | 84.42 |