Abstract
We propose a fault-tolerant artificial pancreas architecture for type 1 diabetes management that leverages advanced artificial intelligence (AI) methods. The system combines a step-forward predictive controller with a type-3 fuzzy logic system (FLS) in a dual-loop structure, augmented by a real-time sensor fault detection and compensation unit. The fault detection unit uses fuzzy prediction to estimate and correct sensor fault coefficients, thereby mitigating the impact of corrupted glucose measurements. Closed-loop stability is established through Lyapunov-based analysis, which informs the design of the adaptive compensator. Performance was evaluated using simulation studies on a modified Bergman model that incorporates patient variability and external disturbances. Results show that the proposed AI-based controller achieves greater robustness, adaptability, and fault tolerance compared with conventional control approaches. These findings demonstrate the promise of integrating predictive control with fuzzy logic for reliable intelligent healthcare systems, offering new opportunities for safe and effective AI-driven solutions in biomedical engineering.
Data availability
The paper does not present any data, and does not use any data. All results can be re-extracted by the provided algorithm and equations.
References
Amilo, D. A quantum-inspired neural fuzzy sliding mode control framework for fractional-order modeling of intraocular pressure regulation and optic nerve damage in glaucoma. Sci. Rep. 15(1), 23438 (2025).
Alolaiyan, H. et al. Optimal selection of diagnostic method for diabetes mellitus using complex bipolar fuzzy dynamic data. Sci. Rep. 15(1), 3921 (2025).
Belmon, A. P. & Auxillia, J. An adaptive technique based blood glucose control in type-1 diabetes mellitus patients. Int. J. Numer. Methods Biomed. Eng. 36(8), e3371 (2020).
Delavari, H., Heydarinejad, H. & Baleanu, D. Adaptive fractional–order blood glucose regulator based on high–order sliding mode observer. IET Syst. Biol. 13(2):43–54 (2019).
González, A. H., Rivadeneira, P. S., Ferramosca, A., Magdelaine, N. & Moog, C. H. Stable impulsive zone model predictive control for type 1 diabetic patients based on a long-term model. Optim. Control Appl. Methods 41(6), 2115–2136 (2020).
Feng, K., Ji, J. C. & Ni, Q. A novel gear fatigue monitoring indicator and its application to remaining useful life prediction for spur gear in intelligent manufacturing systems. Int. J. Fatigue 168, 107459 (2023).
Forooshani, R. Z., Siahi, M. & Ramezani, A. Adaptive type-2 fuzzy control for regulation of glucose level in type 1 diabetes. IETE J. Res. 68(1), 194–204 (2022).
Mohammadzadeh, A. & Kumbasar, T. A new fractional-order general type-2 fuzzy predictive control system and its application for glucose level regulation. Appl. Soft Comput. 91, 106241 (2020).
Khani, A., Bagheri, P., Baradarannia, M. & Mohammadzadeh A. Type 3 fuzzy predictive control of the insulin-glucose system in type 1 diabetes. Int. J. Fuzzy Syst. 27, 805–817 (2024). https://doi.org/10.1007/s40815-024-01806-z
Mahmoudi, Z., Nørgaard, K., Poulsen, N. K., Madsen, H. & Jørgensen, J. B. Fault and meal detection by redundant continuous glucose monitors and the unscented Kalman filter. Biomed. Signal Process. Control 38, 86–99 (2017).
Turksoy, K., Hajizadeh, I., Littlejohn, E. & Cinar, A. Multivariate statistical monitoring of sensor faults of a multivariable artificial pancreas. IFAC-Pap. 50(1), 10998–1004 (2017).
Yu, X. et al. Fault detection in continuous glucose monitoring sensors for artificial pancreas systems. IFAC-Pap. 51(18), 714–719 (2018).
Zhang, Y. & Jiang, J. Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32(2), 229–252 (2008).
Khani, A., Bagheri, P., Baradarannia, M. & Mohammadzadeh, A. Artificial intelligent pancreas for type 1 diabetic patients using adaptive type 3 fuzzy fault tolerant predictive control. Eng. Appl. Artif. Intell. 139, 109627 (2025).
Khani, A., Bagheri, P., Baradarannia, M. & Mohammadzadeh, A. Type 1 diabetes control using type 3 fuzzy fault tolerant predictive control. Optim. Control Appl. Methods. 46 (5), 2095–2107 (2025).
Norouzi, A., Heidarifar, H., Hoseinali, B., Shahbakhti, M. & Charles, K. R. Integrating machine learning and model predictive control for automotive applications: A review and future directions. Eng. Appl. Artif. Intell. 120, 105878 (2023).
Hui, L. et al. Robust asynchronous fuzzy predictive fault-tolerant tracking control for nonlinear multi-phase batch processes with time-varying reference trajectories. Eng. Appl. Artif. Intell. 133, 108415 (2024).
Adukwu, O., Odloak, D. & Junior, F. K. Fault-Tolerant Control of Gas-Lifted Oil Well. IEEE Access 11, 24780–24793 (2023).
Kargar, S. K., Salahshoor, K. & Yazdanpanah, M. J. Integrated nonlinear model predictive fault tolerant control and multiple model based fault detection and diagnosis. Chem. Eng. Res. Des. 92(2), 340–349 (2014).
Kang, Y., Yao, L. & Ren, Y. Fault diagnosis and model predictive fault-tolerant control for stochastic distribution collaborative systems based on the T-S fuzzy model. Int. J. Syst. Sci. 51(4), 719–730 (2020).
Chilin, D., Liu, J., de la Peña, D. M., Christofides, P. D. & Davis, J. F. Detection, isolation and handling of actuator faults in distributed model predictive control systems. J. Process Control 20(9), 1059–1075 (2010).
Bavili, R. E. et al. A new active fault tolerant control system: Predictive on-line fault estimation. IEEE Access 9, 118461–118471 (2021).
Zafra-Cabeza, A., Marquez, J. J., Bordons, C. & Ridao, M. A. An on-line stochastic MPC-based fault-tolerant optimization for microgrids. Control Eng. Pract. 130, 105381 (2023).
Feng, K. et al. Digital twin enabled domain adversarial graph networks for bearing fault diagnosis. IEEE Trans. Ind. Cyber-Phys Syst. 1, 113–122 (2023).
Patel, H. R. & Shah, V. A. Shadowed type-2 fuzzy sets in dynamic parameter adaption in cuckoo search and flower pollination algorithms for optimal design of fuzzy fault-tolerant controllers. Math. Comput. Appl. 27(6), 89 (2022).
Patel, H. R. & Shah, V. A. A metaheuristic approach for interval type-2 fuzzy fractional order fault-tolerant controller for a class of uncertain nonlinear system. Automatika: časopis za automatiku, mjerenje, elektroniku, računarsvo i komunikacije 63(4), 656–675 (2022).
Patel, H. R. & Shah, V. A. Comparative analysis between two fuzzy variants of harmonic search algorithm: Fuzzy fault tolerant control application. IFAC-Pap. 55(7), 507–512 (2022).
Patel, H. R. & Shah, V. A. Fuzzy logic based metaheuristic algorithm for optimization of type-1 fuzzy controller: Fault-tolerant control for nonlinear system with actuator fault. IFAC-Pap. 55(1), 715–721 (2022).
Patel, H. R. & Shah, V. A. Decentralized stable and robust fault-tolerant PI plus fuzzy control of MIMO systems: a quadruple tank case study. Int. J. Smart Sens. Intell. Syst. 12(1), 1 (2019).
Patel, H. R. Optimal intelligent fuzzy TID controller for an uncertain level process with actuator and system faults: population-based metaheuristic approach. Franklin Open. 4, 100038 (2023).
Patel, H. R. & Shah, V. A. Simulation and comparison between fuzzy harmonic search and differential evolution algorithm: type-2 fuzzy approach. IFAC-Pap. 55(16), 412–417 (2022).
AL-Samarraie, S.A. & Salman, S. D. Backstepping nonlinear control for blood glucose based on sliding mode meal observer. Al-Nahrain J. Eng. Sci. 21(3), 436–444 (2018).
Maxime Penet. Robust Nonlinear Model Predictive Control based on Constrained Saddle Point Optimization : Stability Analysis and Application to Type 1 Diabetes. Other. Supélec, 2013. English. ⟨NNT : 2013SUPL0019⟩. ⟨tel-00968899⟩
Valdez, F., Castillo, O. & Melin, P. A bibliometric review of type-3 fuzzy logic applications. Mathematics 13(3), 375 (2025).
Aliev, R., Abiyev, R. & Abizada, S. Type-3 fuzzy neural networks for dynamic system control. Inf. Sci. 690, 121454 (2025).
Mendez, G. M., Lopez-Juarez, I., Montes-Dorantes, P. N. & Garcia, M. A. A new method for the design of interval Type-3 fuzzy logic systems with uncertain Type-2 non-singleton inputs (IT3 NSFLS-2): A case study in a hot strip mill. IEEE Access 11, 44065–44081 (2023).
Singh, D. J., Verma, N. K., Ghosh, A. K. & Malagaudanavar, A. An approach towards the design of interval type-3 T–S fuzzy aystem. IEEE Trans. Fuzzy Syst. 30(9), 3880–3893 (2021).
Harikaran, B., Harshavarthini, S., Lee, S., Sakthivel, R. & Sathiyaraj, T. New results on interval type-3 fuzzy control for nonlinear time-delay systems using convex relaxation technique. IEEE Trans. Syst. Man. Cybern : Syst. 55 (5), 3630–3641 (2025).
Melin, P. & Castillo, O. A type-3 fuzzy-fractal approach for diagnosis of mental disorders. In: Type-3 Fuzzy Logic and Fractal Theory for Medical Diagnosis. p. 47–55 (Springer, 2025).
Amador-Angulo, L., Castillo, O., Melin, P. & Geem, Z. W. Type-3 fuzzy dynamic adaptation of Bee colony optimization applied to mathematical functions. Fuzzy Sets Syst. 489, 109014 (2024).
Elhaki, O., Shojaei, K., Mohammadzadeh, A. & Rathinasamy, S. Robust amplitude-limited interval type-3 neuro-fuzzy controller for robot manipulators with prescribed performance by output feedback. Neural Comput. Appl. 35(12), 9115–9130 (2023).
Qasem, S. N., Ahmadian, A., Mohammadzadeh, A., Rathinasamy, S. & Pahlevanzadeh, B. A type-3 logic fuzzy system: Optimized by a correntropy based Kalman filter with adaptive fuzzy kernel size. Inf. Sci. 572, 424–443 (2021).
Moradi, R. & Groth, K. M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. Int. J. Hydrog. Energy 44, 12254–12269 (2019).
Funding
No funding was received for this study.
Author information
Authors and Affiliations
Contributions
Conceptualization: V.T. M., K.A.A., A.K., and A.M.; Writing initial draft: A.K.; Formal analysis: V.T. M., K.A.A., A.K., and A.M.; Review and Editing: V.T. M., K.A.A., A.K., and A.M.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Mai, V.T., Alattas, K.A., Khani, A. et al. A sensor-fault resilient artificial pancreas using type-3 fuzzy logic and predictive controls. Sci Rep (2026). https://doi.org/10.1038/s41598-025-34383-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-34383-8