Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
A sensor-fault resilient artificial pancreas using type-3 fuzzy logic and predictive controls
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 02 January 2026

A sensor-fault resilient artificial pancreas using type-3 fuzzy logic and predictive controls

  • V. T. Mai1,
  • Khalid A. Alattas2,
  • Arman Khani3 &
  • …
  • Ardashir Mohammadzadeh4 

Scientific Reports , Article number:  (2026) Cite this article

  • 773 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Engineering
  • Mathematics and computing

Abstract

We propose a fault-tolerant artificial pancreas architecture for type 1 diabetes management that leverages advanced artificial intelligence (AI) methods. The system combines a step-forward predictive controller with a type-3 fuzzy logic system (FLS) in a dual-loop structure, augmented by a real-time sensor fault detection and compensation unit. The fault detection unit uses fuzzy prediction to estimate and correct sensor fault coefficients, thereby mitigating the impact of corrupted glucose measurements. Closed-loop stability is established through Lyapunov-based analysis, which informs the design of the adaptive compensator. Performance was evaluated using simulation studies on a modified Bergman model that incorporates patient variability and external disturbances. Results show that the proposed AI-based controller achieves greater robustness, adaptability, and fault tolerance compared with conventional control approaches. These findings demonstrate the promise of integrating predictive control with fuzzy logic for reliable intelligent healthcare systems, offering new opportunities for safe and effective AI-driven solutions in biomedical engineering.

Data availability

The paper does not present any data, and does not use any data. All results can be re-extracted by the provided algorithm and equations.

References

  1. Amilo, D. A quantum-inspired neural fuzzy sliding mode control framework for fractional-order modeling of intraocular pressure regulation and optic nerve damage in glaucoma. Sci. Rep. 15(1), 23438 (2025).

    Google Scholar 

  2. Alolaiyan, H. et al. Optimal selection of diagnostic method for diabetes mellitus using complex bipolar fuzzy dynamic data. Sci. Rep. 15(1), 3921 (2025).

    Google Scholar 

  3. Belmon, A. P. & Auxillia, J. An adaptive technique based blood glucose control in type-1 diabetes mellitus patients. Int. J. Numer. Methods Biomed. Eng. 36(8), e3371 (2020).

    Google Scholar 

  4. Delavari, H., Heydarinejad, H. & Baleanu, D. Adaptive fractional–order blood glucose regulator based on high–order sliding mode observer. IET Syst. Biol. 13(2):43–54 (2019).

  5. González, A. H., Rivadeneira, P. S., Ferramosca, A., Magdelaine, N. & Moog, C. H. Stable impulsive zone model predictive control for type 1 diabetic patients based on a long-term model. Optim. Control Appl. Methods 41(6), 2115–2136 (2020).

    Google Scholar 

  6. Feng, K., Ji, J. C. & Ni, Q. A novel gear fatigue monitoring indicator and its application to remaining useful life prediction for spur gear in intelligent manufacturing systems. Int. J. Fatigue 168, 107459 (2023).

    Google Scholar 

  7. Forooshani, R. Z., Siahi, M. & Ramezani, A. Adaptive type-2 fuzzy control for regulation of glucose level in type 1 diabetes. IETE J. Res. 68(1), 194–204 (2022).

    Google Scholar 

  8. Mohammadzadeh, A. & Kumbasar, T. A new fractional-order general type-2 fuzzy predictive control system and its application for glucose level regulation. Appl. Soft Comput. 91, 106241 (2020).

    Google Scholar 

  9. Khani, A., Bagheri, P., Baradarannia, M. & Mohammadzadeh A. Type 3 fuzzy predictive control of the insulin-glucose system in type 1 diabetes. Int. J. Fuzzy Syst. 27, 805–817 (2024). https://doi.org/10.1007/s40815-024-01806-z

  10. Mahmoudi, Z., Nørgaard, K., Poulsen, N. K., Madsen, H. & Jørgensen, J. B. Fault and meal detection by redundant continuous glucose monitors and the unscented Kalman filter. Biomed. Signal Process. Control 38, 86–99 (2017).

    Google Scholar 

  11. Turksoy, K., Hajizadeh, I., Littlejohn, E. & Cinar, A. Multivariate statistical monitoring of sensor faults of a multivariable artificial pancreas. IFAC-Pap. 50(1), 10998–1004 (2017).

    Google Scholar 

  12. Yu, X. et al. Fault detection in continuous glucose monitoring sensors for artificial pancreas systems. IFAC-Pap. 51(18), 714–719 (2018).

    Google Scholar 

  13. Zhang, Y. & Jiang, J. Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32(2), 229–252 (2008).

    Google Scholar 

  14. Khani, A., Bagheri, P., Baradarannia, M. & Mohammadzadeh, A. Artificial intelligent pancreas for type 1 diabetic patients using adaptive type 3 fuzzy fault tolerant predictive control. Eng. Appl. Artif. Intell. 139, 109627 (2025).

    Google Scholar 

  15. Khani, A., Bagheri, P., Baradarannia, M. & Mohammadzadeh, A. Type 1 diabetes control using type 3 fuzzy fault tolerant predictive control. Optim. Control Appl. Methods. 46 (5), 2095–2107 (2025).

  16. Norouzi, A., Heidarifar, H., Hoseinali, B., Shahbakhti, M. & Charles, K. R. Integrating machine learning and model predictive control for automotive applications: A review and future directions. Eng. Appl. Artif. Intell. 120, 105878 (2023).

    Google Scholar 

  17. Hui, L. et al. Robust asynchronous fuzzy predictive fault-tolerant tracking control for nonlinear multi-phase batch processes with time-varying reference trajectories. Eng. Appl. Artif. Intell. 133, 108415 (2024).

    Google Scholar 

  18. Adukwu, O., Odloak, D. & Junior, F. K. Fault-Tolerant Control of Gas-Lifted Oil Well. IEEE Access 11, 24780–24793 (2023).

    Google Scholar 

  19. Kargar, S. K., Salahshoor, K. & Yazdanpanah, M. J. Integrated nonlinear model predictive fault tolerant control and multiple model based fault detection and diagnosis. Chem. Eng. Res. Des. 92(2), 340–349 (2014).

    Google Scholar 

  20. Kang, Y., Yao, L. & Ren, Y. Fault diagnosis and model predictive fault-tolerant control for stochastic distribution collaborative systems based on the T-S fuzzy model. Int. J. Syst. Sci. 51(4), 719–730 (2020).

    Google Scholar 

  21. Chilin, D., Liu, J., de la Peña, D. M., Christofides, P. D. & Davis, J. F. Detection, isolation and handling of actuator faults in distributed model predictive control systems. J. Process Control 20(9), 1059–1075 (2010).

  22. Bavili, R. E. et al. A new active fault tolerant control system: Predictive on-line fault estimation. IEEE Access 9, 118461–118471 (2021).

    Google Scholar 

  23. Zafra-Cabeza, A., Marquez, J. J., Bordons, C. & Ridao, M. A. An on-line stochastic MPC-based fault-tolerant optimization for microgrids. Control Eng. Pract. 130, 105381 (2023).

    Google Scholar 

  24. Feng, K. et al. Digital twin enabled domain adversarial graph networks for bearing fault diagnosis. IEEE Trans. Ind. Cyber-Phys Syst. 1, 113–122 (2023).

  25. Patel, H. R. & Shah, V. A. Shadowed type-2 fuzzy sets in dynamic parameter adaption in cuckoo search and flower pollination algorithms for optimal design of fuzzy fault-tolerant controllers. Math. Comput. Appl. 27(6), 89 (2022).

    Google Scholar 

  26. Patel, H. R. & Shah, V. A. A metaheuristic approach for interval type-2 fuzzy fractional order fault-tolerant controller for a class of uncertain nonlinear system. Automatika: časopis za automatiku, mjerenje, elektroniku, računarsvo i komunikacije 63(4), 656–675 (2022).

  27. Patel, H. R. & Shah, V. A. Comparative analysis between two fuzzy variants of harmonic search algorithm: Fuzzy fault tolerant control application. IFAC-Pap. 55(7), 507–512 (2022).

    Google Scholar 

  28. Patel, H. R. & Shah, V. A. Fuzzy logic based metaheuristic algorithm for optimization of type-1 fuzzy controller: Fault-tolerant control for nonlinear system with actuator fault. IFAC-Pap. 55(1), 715–721 (2022).

    Google Scholar 

  29. Patel, H. R. & Shah, V. A. Decentralized stable and robust fault-tolerant PI plus fuzzy control of MIMO systems: a quadruple tank case study. Int. J. Smart Sens. Intell. Syst. 12(1), 1 (2019).

    Google Scholar 

  30. Patel, H. R. Optimal intelligent fuzzy TID controller for an uncertain level process with actuator and system faults: population-based metaheuristic approach. Franklin Open. 4, 100038 (2023).

    Google Scholar 

  31. Patel, H. R. & Shah, V. A. Simulation and comparison between fuzzy harmonic search and differential evolution algorithm: type-2 fuzzy approach. IFAC-Pap. 55(16), 412–417 (2022).

    Google Scholar 

  32. AL-Samarraie, S.A. & Salman, S. D. Backstepping nonlinear control for blood glucose based on sliding mode meal observer. Al-Nahrain J. Eng. Sci. 21(3), 436–444 (2018).

  33. Maxime Penet. Robust Nonlinear Model Predictive Control based on Constrained Saddle Point Optimization : Stability Analysis and Application to Type 1 Diabetes. Other. Supélec, 2013. English. ⟨NNT : 2013SUPL0019⟩. ⟨tel-00968899⟩

  34. Valdez, F., Castillo, O. & Melin, P. A bibliometric review of type-3 fuzzy logic applications. Mathematics 13(3), 375 (2025).

    Google Scholar 

  35. Aliev, R., Abiyev, R. & Abizada, S. Type-3 fuzzy neural networks for dynamic system control. Inf. Sci. 690, 121454 (2025).

    Google Scholar 

  36. Mendez, G. M., Lopez-Juarez, I., Montes-Dorantes, P. N. & Garcia, M. A. A new method for the design of interval Type-3 fuzzy logic systems with uncertain Type-2 non-singleton inputs (IT3 NSFLS-2): A case study in a hot strip mill. IEEE Access 11, 44065–44081 (2023).

    Google Scholar 

  37. Singh, D. J., Verma, N. K., Ghosh, A. K. & Malagaudanavar, A. An approach towards the design of interval type-3 T–S fuzzy aystem. IEEE Trans. Fuzzy Syst. 30(9), 3880–3893 (2021).

  38. Harikaran, B., Harshavarthini, S., Lee, S., Sakthivel, R. & Sathiyaraj, T. New results on interval type-3 fuzzy control for nonlinear time-delay systems using convex relaxation technique. IEEE Trans. Syst. Man. Cybern : Syst. 55 (5), 3630–3641 (2025).

  39. Melin, P. & Castillo, O. A type-3 fuzzy-fractal approach for diagnosis of mental disorders. In: Type-3 Fuzzy Logic and Fractal Theory for Medical Diagnosis. p. 47–55 (Springer, 2025).

  40. Amador-Angulo, L., Castillo, O., Melin, P. & Geem, Z. W. Type-3 fuzzy dynamic adaptation of Bee colony optimization applied to mathematical functions. Fuzzy Sets Syst. 489, 109014 (2024).

    Google Scholar 

  41. Elhaki, O., Shojaei, K., Mohammadzadeh, A. & Rathinasamy, S. Robust amplitude-limited interval type-3 neuro-fuzzy controller for robot manipulators with prescribed performance by output feedback. Neural Comput. Appl. 35(12), 9115–9130 (2023).

    Google Scholar 

  42. Qasem, S. N., Ahmadian, A., Mohammadzadeh, A., Rathinasamy, S. & Pahlevanzadeh, B. A type-3 logic fuzzy system: Optimized by a correntropy based Kalman filter with adaptive fuzzy kernel size. Inf. Sci. 572, 424–443 (2021).

    Google Scholar 

  43. Moradi, R. & Groth, K. M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. Int. J. Hydrog. Energy 44, 12254–12269 (2019).

    Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

  1. Faculty of Engineering, Dong Nai Technology University, Bien Hoa City, Vietnam

    V. T. Mai

  2. Department of Computer Science and Artificial Intelligence, College of Computer Science and Engineering, University of Jeddah, Jeddah 23890, Saudi Arabia

    Khalid A. Alattas

  3. Department of Electrical Engineering, University of Tabriz, Tabriz, Iran

    Arman Khani

  4. Faculty of Engineering, Department of Electrical and Electronics Engineering, Sakarya University, Sakarya, Türkiye

    Ardashir Mohammadzadeh

Authors
  1. V. T. Mai
    View author publications

    Search author on:PubMed Google Scholar

  2. Khalid A. Alattas
    View author publications

    Search author on:PubMed Google Scholar

  3. Arman Khani
    View author publications

    Search author on:PubMed Google Scholar

  4. Ardashir Mohammadzadeh
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: V.T. M., K.A.A., A.K., and A.M.; Writing initial draft: A.K.; Formal analysis: V.T. M., K.A.A., A.K., and A.M.; Review and Editing: V.T. M., K.A.A., A.K., and A.M.

Corresponding author

Correspondence to Arman Khani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, V.T., Alattas, K.A., Khani, A. et al. A sensor-fault resilient artificial pancreas using type-3 fuzzy logic and predictive controls. Sci Rep (2026). https://doi.org/10.1038/s41598-025-34383-8

Download citation

  • Received: 02 October 2025

  • Accepted: 29 December 2025

  • Published: 02 January 2026

  • DOI: https://doi.org/10.1038/s41598-025-34383-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Artificial intelligent pancreas
  • Type 3 fuzzy system
  • Sensor fault
  • Type 1 diabetes
  • Lyapunov analysis
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics