Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Kirchhoff Law Johnson noise key generation for secure decentralized identifiers
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 08 January 2026

Kirchhoff Law Johnson noise key generation for secure decentralized identifiers

  • Kamalesh Mohanasundar1,
  • Sarah A. Flanery2,
  • Srujan Kotikela3 &
  • …
  • Christiana Chamon4 

Scientific Reports , Article number:  (2026) Cite this article

  • 482 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Engineering
  • Physics

Abstract

This paper experimentally integrates an existing Kirchhoff–Law–Johnson–Noise (KLJN) physical key exchange scheme as a source of truly random keys for decentralized identifiers (DIDs). Web 3.0 is driven by secure keys, typically represented in hexadecimal, that are pseudo-randomly generated by an initialization vector and complex computational algorithms. We demonstrate that the statistical physical KLJN scheme eliminates the additional computational power by naturally generating physically random binary keys to drive the creation of DIDs that are appended to an Ethereum blockchain.

Similar content being viewed by others

A device-independent quantum key distribution system for distant users

Article Open access 27 July 2022

Device-independent quantum key distribution with random key basis

Article Open access 17 May 2021

An efficient lattice-based integrated revocable identity-based encryption

Article Open access 14 May 2025

Data availability

Data is provided within the manuscript. Original files are available upon request. Christiana Chamon Garcia (ccgarcia@vt.edu) is the point of contact for requesting data.

References

  1. Flanery, S. A., Chamon, C., Kotikela, S. D. & Quek, F. K. Web 3.0 and the ownership of learning. In The Fifth IEEE International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications, TPS ’23, https://doi.org/10.1109/TPS-ISA58951.2023.00016 (Institute of Electrical and Electronics Engineers, Atlanta, Georgia, USA, 2023). (Accessed: Dec. 22, 2023).

  2. Flanery, S. A., Mohanasundar, K., Chamon, C., Kotikela, S. D. & Quek, F. K. Web 3.0 and a decentralized approach to education. arXiv preprint https://doi.org/10.48550/arXiv.2312.12268 (2023). (Accessed: Dec. 22, 2023).

  3. Ferdous, S., Chamon, C. & Kish, L. B. Comments on the generalized kljn key exchanger with arbitrary resistors: Power, impedance, security. Fluct. Noise Lett. 20, 2130002. https://doi.org/10.1142/S0219477521300020 (2021).

    Google Scholar 

  4. Nath, K., Dhar, S. & Basishtha, S. Web 1.0 to web 3.0 - evolution of the web and its various challenges. In International Conference on Reliability Optimization and Information Technology (ICROIT), 86–89, https://doi.org/10.1109/ICROIT.2014.6798297 (Faridabad, India, 2014). (Accessed: Dec. 22, 2023).

  5. Alabdulwahhab, F. A. Web 3.0: The decentralized web blockchain networks and protocol innovation. In IEEE International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), 1–6, https://doi.org/10.1109/ICCCBDA.2016.7529541 (Chengdu, China, 2016). (Accessed: Dec. 22, 2023).

  6. Zheng, Z., Xie, S., Dai, H., Chen, X. & Wang, H. An overview of blockchain technology: Architecture, consensus, and future trends. In 2017 IEEE International Congress on Big Data (BigData Congress), 557–564, https://doi.org/10.1109/BigDataCongress.2017.85 (Institute of Electrical and Electronics Engineers, Honolulu, Hawaii, USA, 2017). (Accessed: Dec. 22, 2023).

  7. Turner, S. Transport layer security. IEEE Internet Comput. 18, 60–63. https://doi.org/10.1109/MIC.2014.126 (2014).

    Google Scholar 

  8. Zhao, X. & Si, Y. W. Nftcert: Nft-based certificates with online payment gateway. In 2021 IEEE International Conference on Blockchain (Blockchain), 538–543, https://doi.org/10.1109/Blockchain53845.2021.00081 (Institute of Electrical and Electronics Engineers, Melbourne, Australia, 2021). (Accessed: Dec. 22, 2023).

  9. Enikolopov, R., Petrova, M. & Sonin, K. Social media and corruption. Am. Econ. J.: Appl. Econ. 10, 150–174. https://doi.org/10.1257/app.20160089 (2018).

    Google Scholar 

  10. Decentralized identifiers (dids) v1.0. https://www.w3.org/TR/did-core/. (Accessed: Dec. 16, 2023).

  11. European digital identity: Council and parliament reach a provisional agreement on eid (2023). https://www.consilium.europa.eu/en/press/press-releases/2023/11/08/european-digital-identity-council-and-parliament-reach-a-provisional-agreement-on-eid/. (Accessed: Dec. 16, 2023).

  12. Decentralized identity and access management of cloud for security as a service, https://doi.org/10.1109/COMSNETS53615.2022.9668529. (Accessed: Dec. 16, 2023).

  13. Xian, J., You, L., Yi, Q., Wang, J. & Hu, G. A survey on decentralized identity management systems. Comput. Sci. Rev. 58, 100811. https://doi.org/10.1016/j.cosrev.2025.100811 (2025).

    Google Scholar 

  14. Li, Z. Z. et al. Disims: A distributed identity management system via blockchain. IEEE Transactions on Dependable and Secure Computing 1–16, https://doi.org/10.1109/TDSC.2025.3624710 (2025). (Accessed: Dec. 17, 2025).

  15. Deng, H. et al. Futuredid: A fully decentralized identity framework with multi-party verification. IEEE Trans. Comput. 73, 2051–2065. https://doi.org/10.1109/TC.2024.3398509 (2024).

    Google Scholar 

  16. Lim, S. Y., Musa, O., Al-rimy, B. & Almasri, A. Trust models for blockchain-based self-sovereign identity management: A survey and research directions. In Blockchain Applications, 277–302, https://doi.org/10.1007/978-3-030-93646-4_13 (Springer, 2022). (Accessed: Dec. 17, 2025).

  17. Chamon, C., Ferdous, S. & Kish, L. B. Random number generator attack against the kirchhoff-law-johnson-noise secure key exchange protocol. arXiv preprint https://doi.org/10.48550/arXiv.2005.10429 (2020). (Accessed: Dec. 22, 2023).

  18. Chamon, C. Random Number Generator, Zero-Crossing, and Nonlinearity Attacks Against the Kirchhoff-Law-Johnson-Noise (KLJN) Secure Key Exchange Protocol. Ph.D. thesis, Texas A&M University (2022).arxiv:2112.09052. (Accessed: Dec. 22, 2023).

  19. Chamon, C., Ferdous, S. & Kish, L. B. Statistical random number generator attack against the kirchhoff-law-johnson-noise (kljn) secure key exchange protocol. Fluct. Noise Lett. 21, 2250027. https://doi.org/10.1142/S0219477522500274 (2022).

    Google Scholar 

  20. Alhassan, I. Z., Abdul-Salaam, G., Asante, M., Missah, Y. M. & Shirazu, A. S. An overview and comparative study of traditional, chaos-based and machine learning approaches in pseudorandom number generation. Journal of Cyber Security (JCS) 7, https://doi.org/10.32604/jcs.2025.063529 (2025). (Accessed: Dec. 17, 2025).

  21. Saini, A., Tsokanos, A. & Kirner, R. Quantum randomness in cryptography-a survey of cryptosystems, rng-based ciphers, and qrngs. Information 13, 358. https://doi.org/10.3390/info13080358 (2022).

    Google Scholar 

  22. Cohney, S. N., Green, M. D. & Heninger, N. Practical state recovery attacks against legacy rng implementations. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security 265–280, https://doi.org/10.1145/3243734.3243756 (2018). (Accessed: Dec. 17, 2025).

  23. Vennos, A., George, K. & Michaels, A. Attacks and defenses for single-stage residue number system prngs. IoT 2, 375–400. https://doi.org/10.3390/iot2030020 (2021).

    Google Scholar 

  24. Matthew, B., Idowu, M., Koc, V. & Kaushik, T. Role of secure random number generation in messaging security. (2025). https://www.researchgate.net/publication/394864658_Role_of_Secure_Random_Number_Generation_in_Messaging_Security. (Accessed: Dec. 17, 2025).

  25. Naumenko, M. Cryptographically Secure Pseudorandom Number Generators. Master’s thesis, Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic (2024). Diploma thesis defended on 6 September 2024. Accessed: Dec. 17, 2025, https://dspace.cuni.cz/handle/20.500.11956/193197.

  26. Kietzmann, P., Schmidt, T. C. & Wählisch, M. A guideline on pseudorandom number generation (prng) in the iot. ACM Computing Surveys54, 112:1–112:38, https://doi.org/10.1145/3453159 (2021). (Accessed: Dec. 17, 2025).

  27. Safoev, N. & Fayziraxmonov, B. Secure randomness in modern operating systems: An analysis of rng architectures in windows, linux, and macos/ios. Zamonaviy Dunyo Ilmi Va Texnologiyalari (ZDIT) 4, 105–113. https://doi.org/10.5281/zenodo.15637151 (2025).

    Google Scholar 

  28. Martínez, E. & Lammer, S. An examination of various random number generator weaknesses. Tech. Rep., eComai KGolf Labs (2023). Cryptanalysis ST 2023 report. https://ls.ecomaikgolf.com/slides/randomnumbers/report.pdf. (Accessed: Dec. 17, 2025).

  29. ethr-did. https://developer.uport.me/ethr-did/docs/guides/index. (Accessed: Dec. 22, 2023).

  30. secp256k1. https://en.bitcoin.it/wiki/Secp256k1. (Accessed: Dec. 22, 2023).

  31. Elliptic curve digital signature algorithm. https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm. (Accessed: Dec. 22, 2023).

  32. Digitize your diplomas, certificates and micro-certifications on the blockchain. https://www.bcdiploma.com/en. (Accessed: Dec. 16, 2023).

  33. openssl/openssl (2021). https://github.com/openssl/openssl. (Accessed: Dec. 16, 2023)

  34. Dahill-Brown, S. E., Witte, J. F. & Wolfe, B. Income and access to higher education: Are high quality universities becoming more or less elite? a longitudinal case study of admissions at uw-madison. RSF: The Russell Sage Foundation Journal of the Social Sciences 2, 69–89, https://doi.org/10.7758/RSF.2016.2.1.04 (2016). (Accessed: Dec. 16, 2023).

  35. Introduction | performant and modular apis for verifiable data and ssi. https://veramo.io/docs/basics/introduction. (Accessed: Dec. 16, 2023).

  36. Update did document | performant and modular apis for verifiable data and ssi. https://veramo.io/docs/react_native_tutorials/react_native_5_update_did_document/. (Accessed: Dec. 16, 2023).

  37. Chamon, C., Ferdous, S. & Kish, L. B. Deterministic random number generator attack against the kirchhoff-law-johnson-noise secure key exchange protocol. Fluct. Noise Lett. 20, 2150046, https://doi.org/10.1142/S0219477521500462 (2021). arxiv:2012.02848. (Accessed: Dec. 22, 2023).

  38. Melhem, M. Y., Chamon, C., Ferdous, S. & Kish, L. B. Alternating (ac) loop current attacks against the kljn secure key exchange scheme. Fluct. Noise Lett. 20, 2150050. https://doi.org/10.1142/S0219477521500504 (2020).

    Google Scholar 

  39. Chamon, C. & Kish, L. B. Perspective—on the thermodynamics of perfect unconditional security. Appl. Phys. Lett. 119, https://doi.org/10.1063/5.0057764 (2021). (Accessed: Dec. 22, 2023).

  40. Ferdous, S., Chamon, C. & Kish, L. B. Current injection and voltage insertion attacks against the vmg-kljn secure key exchanger. Fluct. Noise Lett.22, 2350009. https://doi.org/10.1142/S0219477523500098 (2023).

    Google Scholar 

  41. Chamon, C. & Kish, L. B. Nonlinearity attack against the kirchhoff–law–johnson-noise (kljn) secure key exchange protocol. Fluct. Noise Lett. 21, 2250020, https://doi.org/10.1142/S0219477522500201 (2022). arxiv:2108.09370. (Accessed: Dec. 22, 2023).

  42. Kish, L. B. The Kish Cypher (WORLD SCIENTIFIC, 2017). https://www.worldscientific.com/doi/pdf/10.1142/8707.

  43. Kish, L. B. Totally secure classical communication utilizing johnson (-like) noise and kirchhoff’s law. Physics Letters A 352, 178–182, https://doi.org/10.1016/j.physleta.2005.11.062arxiv:physics/0509136 (2006). (Accessed: Dec. 22, 2023).

  44. Cho, A. Simple noise may stymie spies without quantum weirdness. Science 309, 2148. https://doi.org/10.1126/science.309.5744.2148b (2005).

    Google Scholar 

  45. Kish, L. B. & Granqvist, C. G. On the security of the kirchhoff-law-johnson-noise (kljn) communicator. Quantum Inf. Process.13, 2213–2219, https://doi.org/10.1007/s11128-014-0729-7arxiv:1309.4112 (2014). (Accessed: Dec. 22, 2023).

  46. Kish, L. B. Enhanced secure key exchange systems based on the johnson-noise scheme. Metrol. Meas. Syst. 20, 191–204, https://doi.org/10.2478/mms-2013-0017arxiv:1302.3901 (2013). (Accessed: Dec. 22, 2023).

  47. Kish, L. B. & Horvath, T. Notes on recent approaches concerning the kirchhoff-law-johnson-noise based secure key exchange. Phys. Lett. A 373, 2858–2868, https://doi.org/10.1016/j.physleta.2009.05.077arxiv:0903.2071 (2009). (Accessed: Dec. 22, 2023).

  48. Vadai, G., Mingesz, R. & Gingl, Z. Generalized kirchhoff-law-johnson-noise (kljn) secure key exchange system using arbitrary resistors. Sci. Rep. 5, 13653, https://doi.org/10.1038/srep13653arxiv:1506.00950 (2015). (Accessed: Dec. 22, 2023).

  49. Kish, L. B. & Granqvist, C. G. Random-resistor-random-temperature kirchhoff-law-johnson-noise (rrrt-kljn) key exchange. Metrol. Meas. Syst. 23, 3–11. https://doi.org/10.1515/mms-2016-0007 (2016).

    Google Scholar 

  50. Smulko, J. Performance analysis of the ‘intelligent’ kirchhoff’s-law-johnson-noise secure key exchange. Fluct. Noise Lett. 13, 1450024. https://doi.org/10.1142/S0219477514500242 (2014).

    Google Scholar 

  51. Mingesz, R., Gingl, Z. & Kish, L. B. Johnson(-like)-noise-kirchhoff-loop based secure classical communicator characteristics, for ranges of two to two thousand kilometers, via model-line. Phys. Lett. A 372, 978–984, https://doi.org/10.1016/j.physleta.2007.07.086arxiv:physics/0612153 (2008). (Accessed: Dec. 22, 2023).

  52. Mingesz, R., Vadai, G. & Gingl, Z. Unconditional security by the laws of classical physics. Metrol. Meas. Syst. 20, 3–16. https://doi.org/10.2478/mms-2013-0001 (2013).

    Google Scholar 

  53. Horvath, T., Kish, L. B. & Scheuer, J. Effective privacy amplification for secure classical communications. Europhys. Lett. 94, 28002. https://doi.org/10.1209/0295-5075/94/28002 (2011).

    Google Scholar 

  54. Saez, Y. & Kish, L. B. Errors and their mitigation at the kirchhoff-law-johnson-noise secure key exchange. PLoS ONE 8, e81103. https://doi.org/10.1371/journal.pone.0081103 (2013).

    Google Scholar 

  55. Mingesz, R., Vadai, G. & Gingl, Z. What kind of noise guarantees security for the kirchhoff-loop-johnson-noise key exchange?. Fluct. Noise Lett. 13, 1450021. https://doi.org/10.1142/S0219477514500217 (2014).

    Google Scholar 

  56. Saez, Y., Kish, L. B., Mingesz, R., Gingl, Z. & Granqvist, C. G. Current and voltage based bit errors and their combined mitigation for the kirchhoff-law-johnson-noise secure key exchange. J. Comput. Electron. 13, 271–277. https://doi.org/10.1007/s10825-013-0515-2 (2014).

    Google Scholar 

  57. Saez, Y., Kish, L. B., Mingesz, R., Gingl, Z. & Granqvist, C. G. Bit errors in the kirchhoff-law-johnson-noise secure key exchange. Int. J. Mod. Phys.: Conference Series 33, 1460367. https://doi.org/10.1142/S2010194514603676 (2014).

    Google Scholar 

  58. Gingl, Z. & Mingesz, R. Noise properties in the ideal kirchhoff-law-johnson-noise secure communication system. PLoS ONE 9, e96109. https://doi.org/10.1371/journal.pone.0096109 (2014).

    Google Scholar 

  59. Liu, P. L. A key agreement protocol using band-limited random signals and feedback. IEEE J. Light. Technol. 27, 5230–5234. https://doi.org/10.1109/JLT.2009.2031421 (2009).

    Google Scholar 

  60. Kish, L. B. & Mingesz, R. Totally secure classical networks with multipoint telecloning (teleportation) of classical bits through loops with johnson-like noise. Fluct. Noise Lett. 6, C9–C21. https://doi.org/10.1142/S021947750600332X (2006).

    Google Scholar 

  61. Kish, L. B. Methods of using existing wire lines (power lines, phone lines, internet lines) for totally secure classical communication utilizing kirchoff’s law and johnson-like noise. arXiv preprint https://doi.org/10.48550/arXiv.physics/0610014 (2006). (Accessed: Dec. 22, 2023).

  62. Kish, L. B. & Peper, F. Information networks secured by the laws of physics. IEICE Trans. Commun. E95-B, 1501–1507, https://doi.org/10.1587/transcom.E95.B.1501 (2012). (Accessed: Dec. 22, 2023).

  63. Gonzalez, E., Kish, L. B., Balog, R. S. & Enjeti, P. Information theoretically secure, enhanced johnson noise based key distribution over the smart grid with switched filters. PLoS ONE 8, e70206. https://doi.org/10.1371/journal.pone.0070206 (2013).

    Google Scholar 

  64. Gonzalez, E., Kish, L. B. & Balog, R. S. Encryption key distribution system and method. U.S. Patent. https://patents.google.com/patent/US9270448B2. (2016). (Accessed: Dec. 22, 2023).

  65. Gonzalez, E., Balog, R. S., Mingesz, R. & Kish, L. B. Unconditional security for the smart power grids and star networks. In 23rd Int. Conf. Noise and Fluctuations (ICNF 2015), https://doi.org/10.1109/ICNF.2015.7288626 (Institute of Electrical and Electronics Engineers, 2015). (Accessed: Dec. 22, 2023).

  66. Gonzalez, E., Balog, R. S. & Kish, L. B. Resource requirements and speed versus geometry of unconditionally secure physical key exchanges. Entropy 2010–2014, https://doi.org/10.3390/e17042010 (2015). (Accessed: Dec. 22, 2023).

  67. Gonzalez, E. & Kish, L. B. Key exchange trust evaluation in peer-to-peer sensor networks with unconditionally secure key exchange. Fluct. Noise Lett. 1650008, https://doi.org/10.1142/S0219477516500085 (2016). (Accessed: Dec. 22, 2023).

  68. Kish, L. B. & Saidi, O. Unconditionally secure computers, algorithms and hardware, such as memories, processors, keyboards, flash and hard drives. Fluct. Noise Lett. L95–L98, https://doi.org/10.1142/S0219477508004362 (2008). (Accessed: Dec. 22, 2023).

  69. Kish, L. B., Entesari, K., Granqvist, C. G. & Kwan, C. Unconditionally secure credit/debit card chip scheme and physical unclonable function. Fluct. Noise Lett. 16, 1750002. https://doi.org/10.1142/S021947751750002X (2017).

    Google Scholar 

  70. Kish, L. B. & Kwan, C. Physical unclonable function hardware keys utilizing kirchhoff-law-johnson-noise secure key exchange and noise-based logic. Fluct. Noise Lett. 12, 1350018. https://doi.org/10.1142/S0219477513500181 (2013).

    Google Scholar 

  71. Saez, Y. & Kish, L. B. Securing vehicle communication systems by the kljn key exchange protocol. Fluct. Noise Lett. 13, 1450020. https://doi.org/10.1142/S0219477514500205 (2014).

    Google Scholar 

  72. Cao, X., Saez, Y., Pesti, G. & Kish, L. B. On kljn-based secure key distribution in vehicular communication networks. Fluct. Noise Lett. 14, 1550008. https://doi.org/10.1142/S021947751550008X (2015).

    Google Scholar 

  73. Kish, L. B. & Granqvist, C. G. Enhanced usage of keys obtained by physical, unconditionally secure distributions. Fluct. Noise Lett. 14, 1550007. https://doi.org/10.1142/S0219477515500078 (2015).

    Google Scholar 

  74. Liu, P. L. A complete circuit model for the key distribution system using resistors and noise sources. Fluct. Noise Lett. 19, 2050012. https://doi.org/10.1142/S0219477520500121 (2020).

    Google Scholar 

  75. Melhem, M. Y. & Kish, L. B. Generalized dc loop current attack against the kljn secure key exchange scheme. Metrol. Meas. Syst. 26, 607–616, https://doi.org/10.24425/mms.2019.129576 (2019). (Accessed: Dec. 22, 2023).

  76. Melhem, M. Y. & Kish, L. B. A static-loop-current attack against the kirchhoff-law-johnson-noise (kljn) secure key exchange system. Appl. Sci. 9, 666. https://doi.org/10.3390/app9040666 (2019).

    Google Scholar 

  77. Melhem, M. Y. & Kish, L. B. The problem of information leak due to parasitic loop currents and voltages in the kljn secure key exchange scheme. Metrol. Meas. Syst. 26, 37–40, https://doi.org/10.24425/mms.2019.126335 (2019). (Accessed: Dec. 22, 2023).

  78. Liu, P. L. Re-examination of the cable capacitance in the key distribution system using resistors and noise sources. Fluct. Noise Lett. 16, 1750025. https://doi.org/10.1142/S0219477517500250 (2017).

    Google Scholar 

  79. Chen, H. P. & Kish, L. B. Current injection attack against the kljn secure key exchange. Metrol. Meas. Syst. 23, 173–181. https://doi.org/10.1515/mms-2016-0025 (2016).

    Google Scholar 

  80. Vadai, G., Gingl, Z. & Mingesz, R. Generalized attack protection in the kirchhoff-law-johnson-noise key exchanger. IEEE Access 4, 1141–1147. https://doi.org/10.1109/ACCESS.2016.2544442 (2016).

    Google Scholar 

  81. Chen, H. P., Gonzalez, E., Saez, Y. & Kish, L. B. Cable capacitance attack against the kljn secure key exchange. Information 719–732, https://doi.org/10.3390/info6040719 (2015). (Accessed: Dec. 22, 2023).

  82. Kish, L. B. & Granqvist, C. G. Elimination of a second-law-attack, and all cable-resistance-based attacks, in the kirchhoff-law-johnson-noise (kljn) secure key exchange system. Entropy 16, 5223–5231. https://doi.org/10.3390/e16105223 (2014).

    Google Scholar 

  83. Kish, L. B. & Scheuer, J. Noise in the wire: The real impact of wire resistance for the johnson (-like) noise based secure communicator. Phys. Lett. A 2140–2142, https://doi.org/10.1016/j.physleta.2010.03.021 (2010). (Accessed: Dec. 22, 2023).

  84. Hao, F. Kish’s key exchange scheme is insecure. IEE Proceedings - Information Security 141–142, https://doi.org/10.1049/ip-ifs:20060068 (2006). (Accessed: Dec. 22, 2023).

  85. Kish, L. B. Response to feng hao’s paper ”kish’s key exchange scheme is insecure”. Fluct. Noise Lett. C37–C41, https://doi.org/10.1142/S021947750600363X (2006). (Accessed: Dec. 22, 2023).

  86. Kish, L. B. Protection against the man-in-the-middle-attack for the kirchhoff-loop-johnson (-like)-noise cipher and expansion by voltage-based security. Fluct. Noise Lett. L57–L63, https://doi.org/10.1142/9789811252143_0056 (2006). (Accessed: Dec. 22, 2023).

  87. Gunn, L. J., Allison, A. & Abbott, D. A new transient attack on the kish key distribution system. IEEE Access 1640–1648, https://doi.org/10.1109/ACCESS.2015.2480422 (2015). (Accessed: Dec. 22, 2023).

  88. Ferdous, S. & Kish, L. B. Transient attacks against the kirchhoff–law–johnson–noise (kljn) secure key exchanger. Appl. Phys. Lett. 143503, https://doi.org/10.1063/5.0146190 (2023). (Accessed: Dec. 22, 2023).

  89. Kish, L. B. & Granqvist, C. G. Comments on ”a new transient attack on the kish key distribution system”. Metrol. Meas. Syst. 321–331, https://doi.org/10.1515/mms-2016-0039 (2015). (Accessed: Dec. 22, 2023).

  90. Gunn, L. J., Allison, A. & Abbott, D. A directional wave measurement attack against the kish key distribution system. Sci. Rep. 6461, https://doi.org/10.1038/srep06461 (2014). (Accessed: Dec. 22, 2023).

  91. Chen, H. P., Kish, L. B., Granqvist, C. G. & Schmera, G. On the “cracking” scheme in the paper “a directional coupler attack against the kish key distribution system” by gunn, allison and abbott. Metrol. Meas. Syst. 21, 389–400, https://doi.org/10.2478/mms-2014-0033arxiv:1405.2034 (2014). (Accessed: Dec. 22, 2023).

  92. Chen, H. P., Kish, L. B., Granqvist, C. G. & Schmera, G. Do electromagnetic waves exist in a short cable at low frequencies? what does physics say?. Fluct. Noise Lett. 13, 1450016. https://doi.org/10.1142/S0219477514500163 (2014).

    Google Scholar 

  93. Kish, L. B. et al. Analysis of an attenuator artifact in an experimental attack by gunn–allison–abbott against the kirchhoff-law-johnson-noise (kljn) secure key exchange system. Fluct. Noise Lett. 1550011, https://doi.org/10.1142/S021947751550011X (2015). (Accessed: Dec. 22, 2023).

  94. Chamon, C. Thermod communication: Low power or hot air? Fluct. Noise Lett. 2540006, https://doi.org/10.1142/S0219477525400061. (Accessed: Dec. 17,2025).

  95. Flanery, S. A., Trapani, A., Chamon, C. & Nazhandali, L. Duality on the thermodynamics of the kirchhoff-law-johnson-noise (kljn) secure key exchange scheme. Fluct. Noise Lett. 0, 2540005, https://doi.org/10.1142/S021947752540005X (2025).

  96. Gilani, K., Bertin, E., Hatin, J. & Crespi, N. A survey on blockchain-based identity management and decentralized privacy for personal data. In 2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS), 97–101, https://doi.org/10.1109/BRAINS49436.2020.9223312 (2020). (Accessed: Dec. 22, 2023).

  97. Alanzi, H. & Alkhatib, M. Towards improving privacy and security of identity management systems using blockchain technology: A systematic review. Appl. Sci.12, https://doi.org/10.3390/app122312415 (2022). (Accessed: Dec. 22,2023).

  98. Anasuri, S., Rusum, G. P. & Pappula, K. K. Blockchain-based identity management in decentralized applications. International Journal of AI, Big Data, Computing and Management Studies3, 70–81, https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P109 (2022). (Accessed: Dec. 22, 2023).

  99. Cao, Y. & Yang, L. A survey of identity management technology. In 2010 IEEE International Conference on Information Theory and Information Security, 287–293, https://doi.org/10.1109/ICITIS.2010.5689468 (2010). (Accessed: Dec. 22, 2023).

  100. Goel, A. & Rahulamathavan, Y. A comparative survey of centralised and decentralised identity management systems: Analysing scalability, security, and feasibility. In Proceedings of the 2023 International Conference on Future Internet (FiCloud), 1–8, https://doi.org/10.1109/FiCloud58648.2023.00011 (2023). (Accessed: Dec. 22, 2023).

  101. Dib, O. & Toumi, K. Decentralized identity systems: Architecture, challenges, solutions and future directions. Annals of Emerging Technologies in Computing (AETiC) 4, 19–40, https://doi.org/10.33166/AETiC.2020.05.002 (2020). (Accessed: Dec. 22, 2023).

  102. Buttar, A. M., Shahid, M. A., Arshad, M. N. & Akbar, M. Decentralized identity management using blockchain technology: Challenges and solutions. In Blockchain Applications - Transforming Industries, Enhancing Security, and Addressing Ethical Considerations, 131–166, https://doi.org/10.1007/978-3-031-45028-0_6 (Springer Nature Switzerland, Cham, 2024). (Accessed: Dec. 22, 2023).

  103. Ahmed, M. R., Islam, A. K. M. M., Shatabda, S. & Islam, S. Blockchain-based identity management system and self-sovereign identity ecosystem: A comprehensive survey. IEEE Access 10, 113436–113481. https://doi.org/10.1109/ACCESS.2022.3216643 (2022).

    Google Scholar 

  104. Siddiqui, S. T., Ahmad, R., Shuaib, M. & Alam, S. Blockchain security threats, attacks and countermeasures. In Hu, Y.-C., Tiwari, S., Trivedi, M. C. & Mishra, K. K. (eds.) Ambient Communications and Computer Systems, vol. 1097 of Advances in Intelligent Systems and Computing, 51–62, https://doi.org/10.1007/978-981-15-1518-7_5 (Springer Singapore, Singapore, 2020).

  105. Sani, A. S., Yuan, D., Meng, K. & Dong, Z. Y. Idenx: A blockchain-based identity management system for supply chain attacks mitigation in smart grids. In 2020 IEEE Power & Energy Society General Meeting (PESGM), 1–5, https://doi.org/10.1109/PESGM41954.2020.9281929 (2020). (Accessed: Dec. 22, 2023).

  106. Alsunbul, A., Elmedany, W. & Al-Ammal, H. Blockchain application in healthcare industry: Attacks and countermeasures. In 2021 International Conference on Data Analytics for Business and Industry (ICDABI), 621–629, https://doi.org/10.1109/ICDABI53623.2021.9655852 (2021). (Accessed: Dec. 22, 2023).

  107. Guggenberger, T., Schlatt, V., Schmid, J. & Urbach, N. A structured overview of attacks on blockchain systems. In Proceedings of the 25th Pacific Asia Conference on Information Systems (PACIS 2021), 100 https://aisel.aisnet.org/pacis2021/100 (2021). (Accessed: Dec. 22, 2023).

  108. Pöhn, D., Grabatin, M. & Hommel, W. Analyzing the threats to blockchain-based self-sovereign identities by conducting a literature survey. Appl. Sci. 14, 139. https://doi.org/10.3390/app14010139 (2024).

    Google Scholar 

  109. Shakib, K. H., Rahman, M., Islam, M. & Chowdhury, M. Impersonation attack using quantum shor’s algorithm against blockchain-based vehicular ad-hoc network. IEEE Trans. Intell. Transp. Syst. 26, 6530–6544. https://doi.org/10.1109/TITS.2025.3534656 (2025).

    Google Scholar 

  110. Johnson, J. B. Thermal agitation of electricity in conductors. Phys. Rev. 32, 97–109. https://doi.org/10.1103/PhysRev.32.97 (1928).

    Google Scholar 

  111. Por, E., van Kooten, M. & Sarkovic, V. Nyquist–shannon sampling theorem. Tech. Rep., Leiden University, Faculty of Science. AOT 2019 exercise sheet/explanation document. https://home.strw.leidenuniv.nl/~por/AOT2019/docs/AOT2019Ex13NyquistTheorem.pdf. (2019). (Accessed: Dec. 22, 2023).

  112. Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284. https://doi.org/10.1088/0034-4885/29/1/306 (1966).

    Google Scholar 

  113. Kish, L. B., Abbott, D. & Granqvist, C. G. Critical analysis of the bennett–riedel attack on secure cryptographic key distributions via the kirchhoff-law-johnson-noise scheme. PLoS ONE e81810, https://doi.org/10.1371/journal.pone.0081810 (2013). (Accessed: Dec. 22, 2023).

  114. Chamon, C. Comment on “a kljn-based thermal noise modulation scheme with enhanced reliability for low-power iot communication”. Fluct. Noise Lett. 2650018, https://doi.org/10.1142/S0219477526500185. (Accessed: Dec. 17,2025).

  115. Chamon, C. Revisiting modulated johnson noise communication: A critical analysis of novelty and power efficiency claims in “communication by means of modulated johnson noise”. Fluct. Noise Lett. 2650017, https://doi.org/10.1142/S0219477526500173. (Accessed: Dec. 17,2025).

  116. Bennett, C. H., Brassard, G. & Robert, J.-M. Privacy amplification by public discussion. SIAM J. Comput. 17, 210–229. https://doi.org/10.1137/0217014 (1988).

    Google Scholar 

  117. Bennett, C., Brassard, G., Crepeau, C. & Maurer, U. Generalized privacy amplification. IEEE Trans. Inf. Theory 41, 1915–1923. https://doi.org/10.1109/18.476316 (1995).

    Google Scholar 

  118. Maurer, U. & Wolf, S. Privacy amplification secure against active adversaries. In Kaliski, B. S. (ed.) Advances in Cryptology — CRYPTO ’97, 307–321, https://doi.org/10.1007/BFb0 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1997). (Accessed: Dec. 22, 2023).

  119. Hayashi, M. Exponential decreasing rate of leaked information in universal random privacy amplification. IEEE Trans. Inf. Theory 57, 3989–4001. https://doi.org/10.1109/TIT.2011.2110950 (2011).

    Google Scholar 

  120. Aggarwal, D., Dodis, Y., Jafargholi, Z., Miles, E. & Reyzin, L. Amplifying privacy in privacy amplification. In Garay, J. A. & Gennaro, R. (eds.) Advances in Cryptology – CRYPTO 2014, 183–198, https://doi.org/10.1007/978-3-662-44381-1_11 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2014). (Accessed: Dec. 22, 2023).

  121. Chen, W.-N., Song, D., özgür, A. & Kairouz, P. Privacy amplification via compression: Achieving the optimal privacy-accuracy-communication trade-off in distributed mean estimation. In Advances in Neural Information Processing Systems 36 (NeurIPS 2023), —, https://doi.org/10.5555/3666122.3669152 (2023). (Accessed: Dec. 22, 2023).

  122. Cachin, C. & Maurer, U. M. Linking information reconciliation and privacy amplification. J. Cryptol. 10, 97–110. https://doi.org/10.1007/s001459900023 (1997).

    Google Scholar 

  123. Maurer, U. & Wolf, S. Secret-key agreement over unauthenticated public channels .ii. privacy amplification. IEEE Trans. Inf. Theory 49, 839–851, https://doi.org/10.1109/TIT.2003.809559 (2003). (Accessed: Dec. 22, 2023).

  124. Rukhin, A. et al. A statistical test suite for random and pseudorandom number generators for cryptographic applications. Tech. Rep. 800-22 Rev. 1a, National Institute of Standards and Technology (2010). https://doi.org/10.6028/NIST.SP.800-22r1a. (Accessed: Dec. 22, 2023).

  125. Hankerson, D., Menezes, A. & Vanstone, S. Guide to elliptic curve cryptography. Springer 75–152 https://link.springer.com/book/10.1007/b97644 (2004). (Accessed: Dec. 22, 2023).

  126. Handschuh, H. & Trichina, E. Hardware security features for secure embedded devices. Vieweg. Wiesbaden 38–44 https://doi.org/10.1007/978-3-8348-9195-2_5 (2006).

    Google Scholar 

  127. Suárez-Albela, M., Fernández-Caramés, T. M., Fraga-Lamas, P. & Castedo, L. A practical performance comparison of ecc and rsa for resource-constrained iot devices. In 2018 Global Internet of Things Summit (GIoTS), 1–6,https://doi.org/10.1109/GIOTS.2018.8534575 (2018). (Accessed: Dec. 22, 2023).

  128. Mössinger, M. Towards. et al. IEEE 17th International Symposium on A World of Wireless. Mobile and Multimedia Networks (WoWMoM)1–6, 2023. https://doi.org/10.1109/WoWMoM.2016.7523559 (2016).

  129. Elhajj, M. & Mulder, P. A comparative analysis of the computation cost and energy consumption of relevant curves of ecc presented in literature. International Journal of Electrical and Computer Engineering Research 3, 1–6, https://doi.org/10.53375/ijecer.2023.318 (2023). (Accessed: Dec. 22, 2023).

  130. Vahdati, Z., Yasin, S. M., Ghasempour, A. & Salehi, M. Comparison of ecc and rsa algorithms in iot devices. Journal of Theoretical and Applied Information Technology 97, 4293–4308 https://www.jatit.org/volumes/Vol97No16/6Vol97No16.pdf (2019). (Accessed: Dec. 22, 2023).

  131. Suárez-Albela, M., Fraga-Lamas, P. & Fernández-Caramés, T. M. A practical evaluation on rsa and ecc-based cipher suites for iot high-security energy-efficient fog and mist computing devices. Sensors 18, https://doi.org/10.3390/s18113868 (2018). (Accessed: Dec. 22, 2023).

Download references

Funding

This work was completed without the use of funds.

Author information

Authors and Affiliations

  1. Department of Computer Science, University of Texas at Dallas, Richardson, 75080, TX, USA

    Kamalesh Mohanasundar

  2. Department of Electrical and Computer Engineering, Texas A&M University, College Station, 77843, TX, USA

    Sarah A. Flanery

  3. Department of Information and Operations Management, Texas A&M University, College Station, TX, 77843, USA

    Srujan Kotikela

  4. Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, 24060, VA, USA

    Christiana Chamon

Authors
  1. Kamalesh Mohanasundar
    View author publications

    Search author on:PubMed Google Scholar

  2. Sarah A. Flanery
    View author publications

    Search author on:PubMed Google Scholar

  3. Srujan Kotikela
    View author publications

    Search author on:PubMed Google Scholar

  4. Christiana Chamon
    View author publications

    Search author on:PubMed Google Scholar

Contributions

C.C. and S.K conceived the experiment(s), K.M, S.A.F, and C.C. conducted the experiment(s), C.C. analysed the results. All authors reviewed the manuscript.

Corresponding author

Correspondence to Christiana Chamon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanasundar, K., Flanery, S.A., Kotikela, S. et al. Kirchhoff Law Johnson noise key generation for secure decentralized identifiers. Sci Rep (2026). https://doi.org/10.1038/s41598-025-34403-7

Download citation

  • Received: 25 February 2025

  • Accepted: 29 December 2025

  • Published: 08 January 2026

  • DOI: https://doi.org/10.1038/s41598-025-34403-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing