Table 11 Numerical values of the KAPLL distribution for θ = (0.5, 1.5, 1, 0.6, 0.3)T.
From: A flexible extension of the log-logistic model with diverse failure rate shapes and applications
n | Est. | Param. | MLE | LSE | WLSE | CRVME | MPSE | PCE | ADE | RADE |
|---|---|---|---|---|---|---|---|---|---|---|
50 | |BIAS| | \(\hat{\alpha }\) | 1.47507 \(^{\{7\}}\) | 1.35017 \(^{\{6\}}\) | 0.60770 \(^{\{2\}}\) | 0.83142 \(^{\{3\}}\) | 0.58597 \(^{\{1\}}\) | 2.19882 \(^{\{8\}}\) | 0.86140 \(^{\{4\}}\) | 1.08296 \(^{\{5\}}\) |
\(\hat{\beta }\) | 0.73413 \(^{\{6\}}\) | 0.87595 \(^{\{8\}}\) | 0.63505 \(^{\{3\}}\) | 0.82633 \(^{\{7\}}\) | 0.29422 \(^{\{1\}}\) | 0.40347 \(^{\{2\}}\) | 0.70372 \(^{\{5\}}\) | 0.65429 \(^{\{4\}}\) | ||
\(\hat{\lambda }\) | 0.80595 \(^{\{2\}}\) | 1.33009 \(^{\{7\}}\) | 0.89118 \(^{\{4\}}\) | 0.89758 \(^{\{5\}}\) | 0.60297 \(^{\{1\}}\) | 3.81477 \(^{\{8\}}\) | 0.80754 \(^{\{3\}}\) | 1.15516 \(^{\{6\}}\) | ||
\(\hat{a}\) | 4.21671 \(^{\{8\}}\) | 0.81180 \(^{\{2\}}\) | 0.78065 \(^{\{1\}}\) | 0.95423 \(^{\{6\}}\) | 1.27450 \(^{\{7\}}\) | 0.87367 \(^{\{3\}}\) | 0.95152 \(^{\{5\}}\) | 0.92921 \(^{\{4\}}\) | ||
\(\hat{b}\) | 0.66267 \(^{\{7\}}\) | 0.41288 \(^{\{6\}}\) | 0.27785 \(^{\{1\}}\) | 0.36366 \(^{\{4\}}\) | 0.33930 \(^{\{3\}}\) | 1.26333 \(^{\{8\}}\) | 0.31985 \(^{\{2\}}\) | 0.40640 \(^{\{5\}}\) | ||
MSE | \(\hat{\alpha }\) | 113.47375 \(^{\{6\}}\) | 245.53194 \(^{\{8\}}\) | 2.34354 \(^{\{2\}}\) | 2.44269 \(^{\{3\}}\) | 1.11265 \(^{\{1\}}\) | 144.57115 \(^{\{7\}}\) | 5.46429 \(^{\{4\}}\) | 6.16705 \(^{\{5\}}\) | |
\(\hat{\beta }\) | 0.75280 \(^{\{5\}}\) | 1.16945 \(^{\{8\}}\) | 0.63200 \(^{\{3\}}\) | 1.01361 \(^{\{7\}}\) | 0.84466 \(^{\{6\}}\) | 0.30605 \(^{\{1\}}\) | 0.72891 \(^{\{4\}}\) | 0.60183 \(^{\{2\}}\) | ||
\(\hat{\lambda }\) | 1.57522 \(^{\{2\}}\) | 223.18141 \(^{\{7\}}\) | 4.21676 \(^{\{5\}}\) | 2.46128 \(^{\{4\}}\) | 1.03667 \(^{\{1\}}\) | 500.75830 \(^{\{8\}}\) | 1.66193 \(^{\{3\}}\) | 15.06015 \(^{\{6\}}\) | ||
\(\hat{a}\) | 77.40649 \(^{\{6\}}\) | 1.64067 \(^{\{7\}}\) | 2.17354 \(^{\{1\}}\) | 2.28303 \(^{\{3\}}\) | 9.20477 \(^{\{5\}}\) | 3.38021 \(^{\{8\}}\) | 2.86580 \(^{\{2\}}\) | 2.46340 \(^{\{4\}}\) | ||
\(\hat{b}\) | 2.95225 \(^{\{7\}}\) | 6.20152 \(^{\{6\}}\) | 0.34010 \(^{\{2\}}\) | 0.44953 \(^{\{3\}}\) | 0.92717 \(^{\{1\}}\) | 52.54912 \(^{\{8\}}\) | 0.41140 \(^{\{4\}}\) | 0.71895 \(^{\{5\}}\) | ||
MRE | \(\hat{\alpha }\) | 2.95014 \(^{\{7\}}\) | 2.70034 \(^{\{6\}}\) | 1.21539 \(^{\{2\}}\) | 1.66283 \(^{\{3\}}\) | 1.17193 \(^{\{1\}}\) | 4.39764 \(^{\{8\}}\) | 1.72280 \(^{\{4\}}\) | 2.16593 \(^{\{5\}}\) | |
\(\hat{\beta }\) | 0.48942 \(^{\{5\}}\) | 0.58396 \(^{\{8\}}\) | 0.42337 \(^{\{2\}}\) | 0.55089 \(^{\{7\}}\) | 0.49012 \(^{\{6\}}\) | 0.26898 \(^{\{1\}}\) | 0.46915 \(^{\{4\}}\) | 0.43619 \(^{\{3\}}\) | ||
\(\hat{\lambda }\) | 0.80595 \(^{\{2\}}\) | 1.33009 \(^{\{7\}}\) | 0.89118 \(^{\{4\}}\) | 0.89758 \(^{\{5\}}\) | 0.60297 \(^{\{1\}}\) | 3.81477 \(^{\{8\}}\) | 0.80754 \(^{\{3\}}\) | 1.15516 \(^{\{6\}}\) | ||
\(\hat{a}\) | 7.02785 \(^{\{8\}}\) | 1.35300 \(^{\{2\}}\) | 1.30108 \(^{\{1\}}\) | 1.59038 \(^{\{6\}}\) | 2.12417 \(^{\{7\}}\) | 1.45612 \(^{\{3\}}\) | 1.58586 \(^{\{5\}}\) | 1.54868 \(^{\{4\}}\) | ||
\(\hat{b}\) | 2.20889 \(^{\{7\}}\) | 1.37626 \(^{\{6\}}\) | 0.92615 \(^{\{1\}}\) | 1.21220 \(^{\{4\}}\) | 1.13101 \(^{\{3\}}\) | 4.21109 \(^{\{8\}}\) | 1.06618 \(^{\{2\}}\) | 1.35467 \(^{\{5\}}\) | ||
\(\sum {Ranks}\) | 86 \(^{\{6\}}\) | 89 \(^{\{8\}}\) | 34 \(^{\{1\}}\) | 70 \(^{\{5\}}\) | 51 \(^{\{2\}}\) | 87 \(^{\{7\}}\) | 55 \(^{\{3\}}\) | 68 \(^{\{4\}}\) | ||
100 | |BIAS| | \(\hat{\alpha }\) | 1.10249 \(^{\{7\}}\) | 0.56864 \(^{\{4\}}\) | 0.31303 \(^{\{1\}}\) | 0.60828 \(^{\{5\}}\) | 0.32779 \(^{\{2\}}\) | 1.41597 \(^{\{8\}}\) | 0.46566 \(^{\{3\}}\) | 0.62576 \(^{\{6\}}\) |
\(\hat{\beta }\) | 0.53028 \(^{\{4\}}\) | 0.70489 \(^{\{7\}}\) | 0.47865 \(^{\{2\}}\) | 0.71237 \(^{\{8\}}\) | 0.52511 \(^{\{3\}}\) | 0.34542 \(^{\{1\}}\) | 0.53286 \(^{\{5\}}\) | 0.53934 \(^{\{6\}}\) | ||
\(\hat{\lambda }\) | 0.61146 \(^{\{6\}}\) | 0.59804 \(^{\{5\}}\) | 0.54349 \(^{\{3\}}\) | 0.62656 \(^{\{7\}}\) | 0.34043 \(^{\{1\}}\) | 2.69888 \(^{\{8\}}\) | 0.54220 \(^{\{2\}}\) | 0.59756 \(^{\{4\}}\) | ||
\(\hat{a}\) | 1.71458 \(^{\{8\}}\) | 0.72309 \(^{\{4\}}\) | 0.50748 \(^{\{1\}}\) | 0.87052 \(^{\{7\}}\) | 0.66570 \(^{\{3\}}\) | 0.73914 \(^{\{5\}}\) | 0.66122 \(^{\{2\}}\) | 0.75501 \(^{\{6\}}\) | ||
\(\hat{b}\) | 0.32276 \(^{\{7\}}\) | 0.23969 \(^{\{5\}}\) | 0.16642 \(^{\{1\}}\) | 0.28636 \(^{\{6\}}\) | 0.16672 \(^{\{2\}}\) | 0.88621 \(^{\{8\}}\) | 0.19188 \(^{\{3\}}\) | 0.23874 \(^{\{4\}}\) | ||
MSE | \(\hat{\alpha }\) | 64.02910 \(^{\{7\}}\) | 1.25178 \(^{\{4\}}\) | 0.22012 \(^{\{2\}}\) | 1.41248 \(^{\{5\}}\) | 0.20341 \(^{\{1\}}\) | 80.52489 \(^{\{8\}}\) | 0.79765 \(^{\{3\}}\) | 2.11849 \(^{\{6\}}\) | |
\(\hat{\beta }\) | 0.42283 \(^{\{5\}}\) | 0.75950 \(^{\{8\}}\) | 0.36905 \(^{\{2\}}\) | 0.74388 \(^{\{7\}}\) | 0.44824 \(^{\{6\}}\) | 0.26565 \(^{\{1\}}\) | 0.40734 \(^{\{3\}}\) | 0.40799 \(^{\{4\}}\) | ||
\(\hat{\lambda }\) | 0.92763 \(^{\{6\}}\) | 0.70433 \(^{\{3\}}\) | 0.72169 \(^{\{4\}}\) | 0.79417 \(^{\{5\}}\) | 0.23896 \(^{\{1\}}\) | 331.39594 \(^{\{8\}}\) | 0.66874 \(^{\{2\}}\) | 0.93658 \(^{\{7\}}\) | ||
\(\hat{a}\) | 16.87478 \(^{\{8\}}\) | 1.32053 \(^{\{2\}}\) | 0.96302 \(^{\{1\}}\) | 1.80628 \(^{\{5\}}\) | 3.63644 \(^{\{6\}}\) | 3.84563 \(^{\{7\}}\) | 1.58257 \(^{\{3\}}\) | 1.68163 \(^{\{4\}}\) | ||
\(\hat{b}\) | 0.53473 \(^{\{7\}}\) | 0.18147 \(^{\{4\}}\) | 0.09872 \(^{\{1\}}\) | 0.24515 \(^{\{6\}}\) | 0.16152 \(^{\{3\}}\) | 28.55340 \(^{\{8\}}\) | 0.12042 \(^{\{2\}}\) | 0.18824 \(^{\{5\}}\) | ||
MRE | \(\hat{\alpha }\) | 2.20498 \(^{\{7\}}\) | 1.13729 \(^{\{4\}}\) | 0.62606 \(^{\{1\}}\) | 1.21656 \(^{\{5\}}\) | 0.65557 \(^{\{2\}}\) | 2.83195 \(^{\{8\}}\) | 0.93132 \(^{\{3\}}\) | 1.25152 \(^{\{6\}}\) | |
\(\hat{\beta }\) | 0.35352 \(^{\{4\}}\) | 0.46993 \(^{\{7\}}\) | 0.31910 \(^{\{2\}}\) | 0.47492 \(^{\{8\}}\) | 0.35007 \(^{\{3\}}\) | 0.23028 \(^{\{1\}}\) | 0.35524 \(^{\{5\}}\) | 0.35956 \(^{\{6\}}\) | ||
\(\hat{\lambda }\) | 0.61146 \(^{\{6\}}\) | 0.59804 \(^{\{5\}}\) | 0.54349 \(^{\{3\}}\) | 0.62656 \(^{\{7\}}\) | 0.34043 \(^{\{1\}}\) | 2.69888 \(^{\{8\}}\) | 0.54220 \(^{\{2\}}\) | 0.59756 \(^{\{4\}}\) | ||
\(\hat{a}\) | 2.85764 \(^{\{8\}}\) | 1.20516 \(^{\{4\}}\) | 0.84580 \(^{\{1\}}\) | 1.45087 \(^{\{7\}}\) | 1.10951 \(^{\{3\}}\) | 1.23190 \(^{\{5\}}\) | 1.10203 \(^{\{2\}}\) | 1.25835 \(^{\{6\}}\) | ||
\(\hat{b}\) | 1.07587 \(^{\{7\}}\) | 0.79895 \(^{\{5\}}\) | 0.55472 \(^{\{1\}}\) | 0.95452 \(^{\{6\}}\) | 0.55574 \(^{\{2\}}\) | 2.95403 \(^{\{8\}}\) | 0.63959 \(^{\{3\}}\) | 0.79581 \(^{\{4\}}\) | ||
\(\sum {Ranks}\) | 97 \(^{\{8\}}\) | 71 \(^{\{4\}}\) | 26 \(^{\{1\}}\) | 94 \(^{\{7\}}\) | 39 \(^{\{2\}}\) | 92 \(^{\{6\}}\) | 43 \(^{\{3\}}\) | 78 \(^{\{5\}}\) | ||
250 | |BIAS| | \(\hat{\alpha }\) | 0.26812 \(^{\{3\}}\) | 0.30941 \(^{\{6\}}\) | 0.18630 \(^{\{2\}}\) | 0.27686 \(^{\{4\}}\) | 0.18017 \(^{\{1\}}\) | 0.42371 \(^{\{8\}}\) | 0.31139 \(^{\{7\}}\) | 0.29818 \(^{\{5\}}\) |
\(\hat{\beta }\) | 0.33627 \(^{\{4\}}\) | 0.49570 \(^{\{8\}}\) | 0.29639 \(^{\{3\}}\) | 0.47771 \(^{\{7\}}\) | 0.29422 \(^{\{1\}}\) | 0.29446 \(^{\{2\}}\) | 0.38212 \(^{\{5\}}\) | 0.39836 \(^{\{6\}}\) | ||
\(\hat{\lambda }\) | 0.44028 \(^{\{6\}}\) | 0.43630 \(^{\{5\}}\) | 0.26810 \(^{\{2\}}\) | 0.45685 \(^{\{7\}}\) | 0.18179 \(^{\{1\}}\) | 0.56347 \(^{\{8\}}\) | 0.38745 \(^{\{4\}}\) | 0.34445 \(^{\{3\}}\) | ||
\(\hat{a}\) | 0.55082 \(^{\{7\}}\) | 0.52289 \(^{\{5\}}\) | 0.27959 \(^{\{2\}}\) | 0.53319 \(^{\{6\}}\) | 0.23904 \(^{\{1\}}\) | 0.43160 \(^{\{4\}}\) | 0.38191 \(^{\{3\}}\) | 0.57117 \(^{\{8\}}\) | ||
\(\hat{b}\) | 0.13236 \(^{\{4\}}\) | 0.15056 \(^{\{6\}}\) | 0.09119 \(^{\{2\}}\) | 0.14224 \(^{\{5\}}\) | 0.07435 \(^{\{1\}}\) | 0.35848 \(^{\{8\}}\) | 0.12340 \(^{\{3\}}\) | 0.15214 \(^{\{7\}}\) | ||
MSE | \(\hat{\alpha }\) | 0.19310 \(^{\{4\}}\) | 0.23497 \(^{\{5\}}\) | 0.05472 \(^{\{1\}}\) | 0.15695 \(^{\{3\}}\) | 0.05922 \(^{\{2\}}\) | 1.37516 \(^{\{8\}}\) | 0.26105 \(^{\{6\}}\) | 0.37526 \(^{\{7\}}\) | |
\(\hat{\beta }\) | 0.19078 \(^{\{3\}}\) | 0.36537 \(^{\{8\}}\) | 0.14267 \(^{\{1\}}\) | 0.34303 \(^{\{7\}}\) | 0.16323 \(^{\{2\}}\) | 0.25713 \(^{\{6\}}\) | 0.21245 \(^{\{4\}}\) | 0.24228 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 0.55121 \(^{\{7\}}\) | 0.39393 \(^{\{5\}}\) | 0.18005 \(^{\{2\}}\) | 0.42076 \(^{\{6\}}\) | 0.07436 \(^{\{1\}}\) | 15.22493 \(^{\{8\}}\) | 0.35373 \(^{\{4\}}\) | 0.27357 \(^{\{3\}}\) | ||
\(\hat{a}\) | 2.21197 \(^{\{8\}}\) | 0.75770 \(^{\{4\}}\) | 0.28897 \(^{\{1\}}\) | 0.77491 \(^{\{5\}}\) | 0.40756 \(^{\{2\}}\) | 0.84513 \(^{\{6\}}\) | 0.49940 \(^{\{3\}}\) | 1.07326 \(^{\{7\}}\) | ||
\(\hat{b}\) | 0.05924 \(^{\{6\}}\) | 0.05547 \(^{\{5\}}\) | 0.02230 \(^{\{2\}}\) | 0.04790 \(^{\{4\}}\) | 0.01343 \(^{\{1\}}\) | 0.48880 \(^{\{8\}}\) | 0.04139 \(^{\{3\}}\) | 0.06575 \(^{\{7\}}\) | ||
MRE | \(\hat{\alpha }\) | 0.53625 \(^{\{3\}}\) | 0.61883 \(^{\{6\}}\) | 0.37261 \(^{\{2\}}\) | 0.55373 \(^{\{4\}}\) | 0.22470 \(^{\{1\}}\) | 0.84742 \(^{\{8\}}\) | 0.62279 \(^{\{7\}}\) | 0.59636 \(^{\{5\}}\) | |
\(\hat{\beta }\) | 0.22418 \(^{\{4\}}\) | 0.33047 \(^{\{8\}}\) | 0.19760 \(^{\{3\}}\) | 0.31847 \(^{\{7\}}\) | 0.11139 \(^{\{1\}}\) | 0.19631 \(^{\{2\}}\) | 0.25474 \(^{\{5\}}\) | 0.26557 \(^{\{6\}}\) | ||
\(\hat{\lambda }\) | 0.44028 \(^{\{6\}}\) | 0.43630 \(^{\{5\}}\) | 0.26810 \(^{\{2\}}\) | 0.45685 \(^{\{7\}}\) | 0.11369 \(^{\{1\}}\) | 0.56347 \(^{\{8\}}\) | 0.38745 \(^{\{4\}}\) | 0.34445 \(^{\{3\}}\) | ||
\(\hat{a}\) | 0.91804 \(^{\{7\}}\) | 0.87148 \(^{\{5\}}\) | 0.46599 \(^{\{2\}}\) | 0.88866 \(^{\{6\}}\) | 0.39841 \(^{\{1\}}\) | 0.71933 \(^{\{4\}}\) | 0.63652 \(^{\{3\}}\) | 0.95195 \(^{\{8\}}\) | ||
\(\hat{b}\) | 0.44121 \(^{\{4\}}\) | 0.50185 \(^{\{6\}}\) | 0.30398 \(^{\{2\}}\) | 0.47414 \(^{\{5\}}\) | 0.24785 \(^{\{1\}}\) | 1.19492 \(^{\{8\}}\) | 0.41133 \(^{\{3\}}\) | 0.50713 \(^{\{7\}}\) | ||
\(\sum {Ranks}\) | 76 \(^{\{4\}}\) | 87 \(^{\{6.5\}}\) | 29 \(^{\{2\}}\) | 83 \(^{\{5\}}\) | 18 \(^{\{1\}}\) | 96 \(^{\{8\}}\) | 64 \(^{\{3\}}\) | 87 \(^{\{6.5\}}\) | ||
500 | |BIAS| | \(\hat{\alpha }\) | 0.22421 \(^{\{5\}}\) | 0.23118 \(^{\{6\}}\) | 0.13038 \(^{\{2\}}\) | 0.24395 \(^{\{7\}}\) | 0.11235 \(^{\{1\}}\) | 8.00000 \(^{\{8\}}\) | 0.21054 \(^{\{4\}}\) | 0.17752 \(^{\{3\}}\) |
\(\hat{\beta }\) | 0.22833 \(^{\{3\}}\) | 0.36684 \(^{\{8\}}\) | 0.19173 \(^{\{2\}}\) | 0.36103 \(^{\{7\}}\) | 0.16708 \(^{\{1\}}\) | 0.29401 \(^{\{5\}}\) | 0.27700 \(^{\{4\}}\) | 0.31467 \(^{\{6\}}\) | ||
\(\hat{\lambda }\) | 0.32169 \(^{\{5\}}\) | 0.40167 \(^{\{8\}}\) | 0.16680 \(^{\{2\}}\) | 0.37895 \(^{\{6\}}\) | 0.11369 \(^{\{1\}}\) | 0.39481 \(^{\{7\}}\) | 0.29942 \(^{\{4\}}\) | 0.23304 \(^{\{3\}}\) | ||
\(\hat{a}\) | 0.23835 \(^{\{4\}}\) | 0.36776 \(^{\{6\}}\) | 0.14127 \(^{\{2\}}\) | 0.34591 \(^{\{5\}}\) | 0.13397 \(^{\{1\}}\) | 0.44996 \(^{\{8\}}\) | 0.22884 \(^{\{3\}}\) | 0.41975 \(^{\{7\}}\) | ||
\(\hat{b}\) | 0.07456 \(^{\{3\}}\) | 0.10155 \(^{\{5\}}\) | 0.05089 \(^{\{2\}}\) | 0.10379 \(^{\{6\}}\) | 0.04671 \(^{\{1\}}\) | 0.39989 \(^{\{8\}}\) | 0.07615 \(^{\{4\}}\) | 0.10456 \(^{\{7\}}\) | ||
MSE | \(\hat{\alpha }\) | 0.72911 \(^{\{7\}}\) | 0.08826 \(^{\{5\}}\) | 0.03018 \(^{\{2\}}\) | 0.11029 \(^{\{6\}}\) | 0.02238 \(^{\{1\}}\) | 1.84928 \(^{\{8\}}\) | 0.08583 \(^{\{4\}}\) | 0.06527 \(^{\{3\}}\) | |
\(\hat{\beta }\) | 0.10082 \(^{\{3\}}\) | 0.20417 \(^{\{7\}}\) | 0.06473 \(^{\{2\}}\) | 0.19448 \(^{\{6\}}\) | 0.06419 \(^{\{1\}}\) | 0.27770 \(^{\{8\}}\) | 0.11921 \(^{\{4\}}\) | 0.15784 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 0.35164 \(^{\{7\}}\) | 0.34549 \(^{\{6\}}\) | 0.07306 \(^{\{2\}}\) | 0.32677 \(^{\{5\}}\) | 0.02424 \(^{\{1\}}\) | 1.60735 \(^{\{8\}}\) | 0.24969 \(^{\{4\}}\) | 0.10124 \(^{\{3\}}\) | ||
\(\hat{a}\) | 0.26772 \(^{\{4\}}\) | 0.38560 \(^{\{6\}}\) | 0.05788 \(^{\{2\}}\) | 0.32624 \(^{\{5\}}\) | 0.04805 \(^{\{1\}}\) | 1.14848 \(^{\{8\}}\) | 0.15310 \(^{\{3\}}\) | 0.59417 \(^{\{7\}}\) | ||
\(\hat{b}\) | 0.01650 \(^{\{4\}}\) | 0.02386 \(^{\{5\}}\) | 0.00570 \(^{\{1\}}\) | 0.02450 \(^{\{6\}}\) | 0.00576 \(^{\{2\}}\) | 0.74513 \(^{\{8\}}\) | 0.01328 \(^{\{3\}}\) | 0.02642 \(^{\{7\}}\) | ||
MRE | \(\hat{\alpha }\) | 0.44842 \(^{\{5\}}\) | 0.46237 \(^{\{6\}}\) | 0.26076 \(^{\{2\}}\) | 0.48791 \(^{\{7\}}\) | 0.22470 \(^{\{1\}}\) | 0.84215 \(^{\{8\}}\) | 0.42108 \(^{\{4\}}\) | 0.35504 \(^{\{3\}}\) | |
\(\hat{\beta }\) | 0.15222 \(^{\{3\}}\) | 0.24456 \(^{\{8\}}\) | 0.12782 \(^{\{2\}}\) | 0.24069 \(^{\{7\}}\) | 0.11139 \(^{\{1\}}\) | 0.19600 \(^{\{5\}}\) | 0.18467 \(^{\{4\}}\) | 0.20978 \(^{\{6\}}\) | ||
\(\hat{\lambda }\) | 0.32169 \(^{\{5\}}\) | 0.40167 \(^{\{8\}}\) | 0.16680 \(^{\{2\}}\) | 0.37895 \(^{\{6\}}\) | 0.11369 \(^{\{1\}}\) | 0.39481 \(^{\{7\}}\) | 0.29942 \(^{\{4\}}\) | 0.23304 \(^{\{3\}}\) | ||
\(\hat{a}\) | 0.39725 \(^{\{4\}}\) | 0.61294 \(^{\{6\}}\) | 0.23545 \(^{\{2\}}\) | 0.57651 \(^{\{5\}}\) | 0.22328 \(^{\{1\}}\) | 0.74993 \(^{\{8\}}\) | 0.38140 \(^{\{3\}}\) | 0.69959 \(^{\{7\}}\) | ||
\(\hat{b}\) | 0.24853 \(^{\{3\}}\) | 0.33852 \(^{\{5\}}\) | 0.16964 \(^{\{2\}}\) | 0.34595 \(^{\{6\}}\) | 0.15571 \(^{\{1\}}\) | 1.33298 \(^{\{8\}}\) | 0.25382 \(^{\{4\}}\) | 0.34853 \(^{\{7\}}\) | ||
\(\sum {Ranks}\) | 65 \(^{\{4\}}\) | 95 \(^{\{7\}}\) | 29 \(^{\{2\}}\) | 90 \(^{\{6\}}\) | 16 \(^{\{1\}}\) | 112 \(^{\{8\}}\) | 56 \(^{\{3\}}\) | 77 \(^{\{5\}}\) |