Table 6 Numerical values of the KAPLL distribution for θ = (0.5, 1.5, 0.5, 1.1, 1.2)T.
From: A flexible extension of the log-logistic model with diverse failure rate shapes and applications
n | Est. | Param. | MLE | LSE | WLSE | CRVME | MPSE | PCE | ADE | RADE |
|---|---|---|---|---|---|---|---|---|---|---|
50 | |BIAS| | \(\hat{\alpha }\) | 7.33456 \(^{\{7\}}\) | 1.38926 \(^{\{2\}}\) | 1.35976 \(^{\{1\}}\) | 1.65595 \(^{\{3\}}\) | 1.80146 \(^{\{5\}}\) | 12.65589 \(^{\{8\}}\) | 1.75620 \(^{\{4\}}\) | 1.99641 \(^{\{6\}}\) |
\(\hat{\beta }\) | 1.04280 \(^{\{7\}}\) | 1.00917 \(^{\{5\}}\) | 0.74365 \(^{\{2\}}\) | 0.97049 \(^{\{4\}}\) | 1.08162 \(^{\{8\}}\) | 0.70165 \(^{\{1\}}\) | 1.03252 \(^{\{6\}}\) | 0.96964 \(^{\{3\}}\) | ||
\(\hat{\lambda }\) | 3.61486 \(^{\{7\}}\) | 0.97180 \(^{\{3\}}\) | 0.43525 \(^{\{1\}}\) | 0.99036 \(^{\{4\}}\) | 2.51147 \(^{\{6\}}\) | 6.45657 \(^{\{8\}}\) | 0.67095 \(^{\{2\}}\) | 1.35638 \(^{\{5\}}\) | ||
\({\hat{a}}\) | 4.69408 \(^{\{8\}}\) | 1.13577 \(^{\{2\}}\) | 1.17080 \(^{\{3\}}\) | 1.29105 \(^{\{4\}}\) | 1.66163 \(^{\{7\}}\) | 0.89241 \(^{\{1\}}\) | 1.51592 \(^{\{6\}}\) | 1.30182 \(^{\{5\}}\) | ||
\({\hat{b}}\) | 12.81277 \(^{\{8\}}\) | 2.33602 \(^{\{2\}}\) | 1.74975 \(^{\{1\}}\) | 2.65505 \(^{\{3\}}\) | 3.31281 \(^{\{5\}}\) | 11.33044 \(^{\{7\}}\) | 2.83263 \(^{\{4\}}\) | 3.54498 \(^{\{6\}}\) | ||
MSE | \(\hat{\alpha }\) | 1980.28316 \(^{\{7\}}\) | 36.56780 \(^{\{1\}}\) | 104.03092 \(^{\{4\}}\) | 93.10813 \(^{\{3\}}\) | 310.88334 \(^{\{6\}}\) | 2028.52414 \(^{\{8\}}\) | 154.01348 \(^{\{5\}}\) | 63.97997 \(^{\{2\}}\) | |
\(\hat{\beta }\) | 1.91463 \(^{\{6\}}\) | 1.67370 \(^{\{5\}}\) | 1.01067 \(^{\{2\}}\) | 1.65201 \(^{\{3\}}\) | 2.78783 \(^{\{8\}}\) | 0.82660 \(^{\{1\}}\) | 1.92654 \(^{\{7\}}\) | 1.67047 \(^{\{4\}}\) | ||
\(\hat{\lambda }\) | 1052.96209 \(^{\{8\}}\) | 15.17457 \(^{\{4\}}\) | 2.20518 \(^{\{1\}}\) | 9.24062 \(^{\{3\}}\) | 956.98240 \(^{\{7\}}\) | 384.60779 \(^{\{6\}}\) | 6.84232 \(^{\{2\}}\) | 24.20128 \(^{\{5\}}\) | ||
\({\hat{a}}\) | 57.20212 \(^{\{8\}}\) | 2.70028 \(^{\{2\}}\) | 4.02568 \(^{\{1\}}\) | 3.57443 \(^{\{3\}}\) | 12.12977 \(^{\{6\}}\) | 2.24387 \(^{\{7\}}\) | 5.68728 \(^{\{4\}}\) | 3.72829 \(^{\{5\}}\) | ||
\({\hat{b}}\) | 3051.10202 \(^{\{7\}}\) | 39.12638 \(^{\{2\}}\) | 25.55038 \(^{\{1\}}\) | 43.72462 \(^{\{3\}}\) | 393.18296 \(^{\{5\}}\) | 944.54632 \(^{\{8\}}\) | 103.58815 \(^{\{4\}}\) | 110.37023 \(^{\{6\}}\) | ||
MRE | \(\hat{\alpha }\) | 14.66912 \(^{\{7\}}\) | 2.77852 \(^{\{2\}}\) | 2.71952 \(^{\{1\}}\) | 3.31190 \(^{\{3\}}\) | 3.60293 \(^{\{5\}}\) | 25.31178 \(^{\{8\}}\) | 3.51240 \(^{\{4\}}\) | 3.99281 \(^{\{6\}}\) | |
\(\hat{\beta }\) | 0.69520 \(^{\{7\}}\) | 0.67278 \(^{\{5\}}\) | 0.49577 \(^{\{2\}}\) | 0.64699 \(^{\{4\}}\) | 0.72108 \(^{\{8\}}\) | 0.46777 \(^{\{1\}}\) | 0.68835 \(^{\{6\}}\) | 0.64643 \(^{\{3\}}\) | ||
\(\hat{\lambda }\) | 7.22972 \(^{\{7\}}\) | 1.94360 \(^{\{3\}}\) | 0.87051 \(^{\{1\}}\) | 1.98072 \(^{\{4\}}\) | 5.02294 \(^{\{6\}}\) | 12.91315 \(^{\{8\}}\) | 1.34189 \(^{\{2\}}\) | 2.71275 \(^{\{5\}}\) | ||
\({\hat{a}}\) | 4.26735 \(^{\{8\}}\) | 1.03252 \(^{\{2\}}\) | 1.06436 \(^{\{3\}}\) | 1.17368 \(^{\{4\}}\) | 1.51057 \(^{\{7\}}\) | 0.81129 \(^{\{1\}}\) | 1.37810 \(^{\{6\}}\) | 1.18347 \(^{\{5\}}\) | ||
\({\hat{b}}\) | 10.67731 \(^{\{8\}}\) | 1.94668 \(^{\{2\}}\) | 1.45812 \(^{\{1\}}\) | 2.21254 \(^{\{3\}}\) | 2.76067 \(^{\{5\}}\) | 9.44203 \(^{\{7\}}\) | 2.36053 \(^{\{4\}}\) | 2.95415 \(^{\{6\}}\) | ||
\(\sum {Ranks}\) | 111 \(^{\{8\}}\) | 42 \(^{\{2\}}\) | 29 \(^{\{1\}}\) | 51 \(^{\{3\}}\) | 96 \(^{\{7\}}\) | 73 \(^{\{6\}}\) | 68 \(^{\{4\}}\) | 70 \(^{\{5\}}\) | ||
100 | |BIAS| | \(\hat{\alpha }\) | 2.42640 \(^{\{7\}}\) | 0.55106 \(^{\{3\}}\) | 0.50483 \(^{\{2\}}\) | 0.77253 \(^{\{6\}}\) | 0.49271 \(^{\{1\}}\) | 5.12919 \(^{\{8\}}\) | 0.66276 \(^{\{4\}}\) | 0.68811 \(^{\{5\}}\) |
\(\hat{\beta }\) | 0.80877 \(^{\{6\}}\) | 0.87406 \(^{\{8\}}\) | 0.52866 \(^{\{1\}}\) | 0.83991 \(^{\{7\}}\) | 0.69908 \(^{\{3\}}\) | 0.66093 \(^{\{2\}}\) | 0.77118 \(^{\{4\}}\) | 0.77679 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 1.33128 \(^{\{7\}}\) | 0.43880 \(^{\{3\}}\) | 0.22592 \(^{\{1\}}\) | 0.51526 \(^{\{6\}}\) | 0.46614 \(^{\{4\}}\) | 5.07549 \(^{\{8\}}\) | 0.31129 \(^{\{2\}}\) | 0.48645 \(^{\{5\}}\) | ||
\({\hat{a}}\) | 2.77457 \(^{\{8\}}\) | 1.07371 \(^{\{4\}}\) | 0.72560 \(^{\{1\}}\) | 1.22572 \(^{\{7\}}\) | 0.97362 \(^{\{2\}}\) | 0.98439 \(^{\{3\}}\) | 1.12954 \(^{\{6\}}\) | 1.12948 \(^{\{5\}}\) | ||
\({\hat{b}}\) | 5.64302 \(^{\{7\}}\) | 1.47045 \(^{\{3\}}\) | 1.00659 \(^{\{1\}}\) | 1.81188 \(^{\{6\}}\) | 1.49176 \(^{\{4\}}\) | 6.78444 \(^{\{8\}}\) | 1.44124 \(^{\{2\}}\) | 1.58196 \(^{\{5\}}\) | ||
MSE | \(\hat{\alpha }\) | 151.72662 \(^{\{7\}}\) | 1.24826 \(^{\{2\}}\) | 1.22870 \(^{\{1\}}\) | 13.83277 \(^{\{6\}}\) | 6.53826 \(^{\{5\}}\) | 418.91065 \(^{\{8\}}\) | 1.77298 \(^{\{3\}}\) | 4.15017 \(^{\{4\}}\) | |
\(\hat{\beta }\) | 1.08838 \(^{\{5\}}\) | 1.22056 \(^{\{8\}}\) | 0.54272 \(^{\{1\}}\) | 1.10947 \(^{\{6\}}\) | 1.20524 \(^{\{7\}}\) | 0.67294 \(^{\{2\}}\) | 0.98338 \(^{\{3\}}\) | 1.08278 \(^{\{4\}}\) | ||
\(\hat{\lambda }\) | 344.87276 \(^{\{7\}}\) | 1.05437 \(^{\{3\}}\) | 0.11262 \(^{\{1\}}\) | 2.43180 \(^{\{5\}}\) | 13.43283 \(^{\{6\}}\) | 829.52179 \(^{\{8\}}\) | 0.21779 \(^{\{2\}}\) | 2.26268 \(^{\{4\}}\) | ||
\({\hat{a}}\) | 22.61881 \(^{\{8\}}\) | 2.37882 \(^{\{2\}}\) | 1.59389 \(^{\{1\}}\) | 3.23610 \(^{\{6\}}\) | 4.03338 \(^{\{7\}}\) | 2.43539 \(^{\{3\}}\) | 3.15933 \(^{\{5\}}\) | 2.84484 \(^{\{4\}}\) | ||
\({\hat{b}}\) | 930.33900 \(^{\{8\}}\) | 6.34267 \(^{\{3\}}\) | 3.47107 \(^{\{1\}}\) | 17.68316 \(^{\{5\}}\) | 25.63750 \(^{\{6\}}\) | 728.96137 \(^{\{7\}}\) | 5.82179 \(^{\{2\}}\) | 13.98925 \(^{\{4\}}\) | ||
MRE | \(\hat{\alpha }\) | 4.85280 \(^{\{7\}}\) | 1.10212 \(^{\{3\}}\) | 1.00967 \(^{\{2\}}\) | 1.54506 \(^{\{6\}}\) | 0.98542 \(^{\{1\}}\) | 10.25839 \(^{\{8\}}\) | 1.32551 \(^{\{4\}}\) | 1.37622 \(^{\{5\}}\) | |
\(\hat{\beta }\) | 0.53918 \(^{\{6\}}\) | 0.58271 \(^{\{8\}}\) | 0.35244 \(^{\{1\}}\) | 0.41773 \(^{\{7\}}\) | 0.46606 \(^{\{3\}}\) | 0.44062 \(^{\{2\}}\) | 0.51412 \(^{\{4\}}\) | 0.51786 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 2.66257 \(^{\{7\}}\) | 0.87760 \(^{\{3\}}\) | 0.45183 \(^{\{1\}}\) | 1.03053 \(^{\{6\}}\) | 0.93229 \(^{\{4\}}\) | 10.15098 \(^{\{8\}}\) | 0.62258 \(^{\{2\}}\) | 0.97290 \(^{\{5\}}\) | ||
\({\hat{a}}\) | 2.52233 \(^{\{8\}}\) | 0.97610 \(^{\{4\}}\) | 0.65963 \(^{\{1\}}\) | 1.11429 \(^{\{7\}}\) | 0.88511 \(^{\{2\}}\) | 0.89490 \(^{\{3\}}\) | 1.02685 \(^{\{6\}}\) | 1.02680 \(^{\{5\}}\) | ||
\({\hat{b}}\) | 4.70252 \(^{\{7\}}\) | 1.22538 \(^{\{3\}}\) | 0.83883 \(^{\{1\}}\) | 1.50990 \(^{\{6\}}\) | 1.24313 \(^{\{4\}}\) | 5.65370 \(^{\{8\}}\) | 1.20103 \(^{\{2\}}\) | 1.31830 \(^{\{5\}}\) | ||
\(\sum {Ranks}\) | 105 \(^{\{8\}}\) | 60 \(^{\{4\}}\) | 17 \(^{\{1\}}\) | 92 \(^{\{7\}}\) | 59 \(^{\{3\}}\) | 86 \(^{\{6\}}\) | 51 \(^{\{2\}}\) | 70 \(^{\{5\}}\) | ||
250 | |BIAS| | \(\hat{\alpha }\) | 0.74436 \(^{\{7\}}\) | 0.42494 \(^{\{3\}}\) | 0.27098 \(^{\{2\}}\) | 0.43157 \(^{\{4\}}\) | 0.25931 \(^{\{1\}}\) | 1.34578 \(^{\{8\}}\) | 0.48593 \(^{\{6\}}\) | 0.46979 \(^{\{5\}}\) |
\(\hat{\beta }\) | 0.48119 \(^{\{3\}}\) | 0.64179 \(^{\{8\}}\) | 0.29941 \(^{\{1\}}\) | 0.62659 \(^{\{7\}}\) | 0.41092 \(^{\{2\}}\) | 0.61360 \(^{\{6\}}\) | 0.53331 \(^{\{4\}}\) | 0.54595 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 0.29436 \(^{\{7\}}\) | 0.23069 \(^{\{3\}}\) | 0.13571 \(^{\{1\}}\) | 0.24185 \(^{\{5\}}\) | 0.17811 \(^{\{2\}}\) | 1.48411 \(^{\{8\}}\) | 0.23247 \(^{\{4\}}\) | 0.25769 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 1.22361 \(^{\{8\}}\) | 0.90018 \(^{\{4\}}\) | 0.45350 \(^{\{1\}}\) | 0.94375 \(^{\{5\}}\) | 0.53277 \(^{\{2\}}\) | 0.98477 \(^{\{7\}}\) | 0.85536 \(^{\{3\}}\) | 0.96788 \(^{\{6\}}\) | ||
\({\hat{b}}\) | 1.54671 \(^{\{7\}}\) | 1.13231 \(^{\{5\}}\) | 0.56658 \(^{\{1\}}\) | 1.20242 \(^{\{6\}}\) | 0.75828 \(^{\{2\}}\) | 2.18539 \(^{\{8\}}\) | 1.01671 \(^{\{3\}}\) | 1.02101 \(^{\{4\}}\) | ||
MSE | \(\hat{\alpha }\) | 3.33489 \(^{\{7\}}\) | 0.42465 \(^{\{4\}}\) | 0.23743 \(^{\{2\}}\) | 0.41778 \(^{\{3\}}\) | 0.19265 \(^{\{1\}}\) | 42.08727 \(^{\{8\}}\) | 0.78241 \(^{\{6\}}\) | 0.70966 \(^{\{5\}}\) | |
\(\hat{\beta }\) | 0.37727 \(^{\{2\}}\) | 0.60976 \(^{\{8\}}\) | 0.17786 \(^{\{1\}}\) | 0.58674 \(^{\{7\}}\) | 0.42207 \(^{\{3\}}\) | 0.55548 \(^{\{6\}}\) | 0.48271 \(^{\{5\}}\) | 0.47553 \(^{\{4\}}\) | ||
\(\hat{\lambda }\) | 0.20610 \(^{\{7\}}\) | 0.11413 \(^{\{4\}}\) | 0.03550 \(^{\{1\}}\) | 0.14141 \(^{\{6\}}\) | 0.08150 \(^{\{2\}}\) | 78.50242 \(^{\{8\}}\) | 0.09260 \(^{\{3\}}\) | 0.12883 \(^{\{5\}}\) | ||
\({\hat{a}}\) | 5.41023 \(^{\{8\}}\) | 1.73323 \(^{\{3\}}\) | 0.73747 \(^{\{1\}}\) | 1.93751 \(^{\{4\}}\) | 1.27584 \(^{\{2\}}\) | 2.70132 \(^{\{7\}}\) | 2.03777 \(^{\{5\}}\) | 2.10666 \(^{\{6\}}\) | ||
\({\hat{b}}\) | 11.42179 \(^{\{7\}}\) | 3.07742 \(^{\{4\}}\) | 1.27643 \(^{\{1\}}\) | 3.39453 \(^{\{5\}}\) | 5.27248 \(^{\{6\}}\) | 74.89245 \(^{\{8\}}\) | 3.03455 \(^{\{3\}}\) | 2.57829 \(^{\{2\}}\) | ||
MRE | \(\hat{\alpha }\) | 1.48871 \(^{\{7\}}\) | 0.84987 \(^{\{3\}}\) | 0.54195 \(^{\{2\}}\) | 0.86313 \(^{\{4\}}\) | 0.31171 \(^{\{1\}}\) | 2.69155 \(^{\{8\}}\) | 0.97186 \(^{\{6\}}\) | 0.93958 \(^{\{5\}}\) | |
\(\hat{\beta }\) | 0.32079 \(^{\{3\}}\) | 0.42786 \(^{\{8\}}\) | 0.19960 \(^{\{2\}}\) | 0.41773 \(^{\{7\}}\) | 0.14498 \(^{\{1\}}\) | 0.40906 \(^{\{6\}}\) | 0.35554 \(^{\{4\}}\) | 0.36397 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 0.58873 \(^{\{7\}}\) | 0.46137 \(^{\{3\}}\) | 0.27143 \(^{\{2\}}\) | 0.48370 \(^{\{5\}}\) | 0.18713 \(^{\{1\}}\) | 2.96822 \(^{\{8\}}\) | 0.46495 \(^{\{4\}}\) | 0.51537 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 1.11237 \(^{\{8\}}\) | 0.81835 \(^{\{4\}}\) | 0.41228 \(^{\{1\}}\) | 0.85795 \(^{\{5\}}\) | 0.48433 \(^{\{2\}}\) | 0.89525 \(^{\{7\}}\) | 0.77760 \(^{\{3\}}\) | 0.87989 \(^{\{6\}}\) | ||
\({\hat{b}}\) | 1.28893 \(^{\{7\}}\) | 0.94359 \(^{\{5\}}\) | 0.47215 \(^{\{1\}}\) | 1.00202 \(^{\{6\}}\) | 0.63190 \(^{\{2\}}\) | 1.82116 \(^{\{8\}}\) | 0.84726 \(^{\{3\}}\) | 0.85084 \(^{\{4\}}\) | ||
\(\sum {Ranks}\) | 95 \(^{\{7\}}\) | 69 \(^{\{4\}}\) | 20 \(^{\{1\}}\) | 79 \(^{\{6\}}\) | 30 \(^{\{2\}}\) | 111 \(^{\{8\}}\) | 62 \(^{\{3\}}\) | 74 \(^{\{5\}}\) | ||
500 | |BIAS| | \(\hat{\alpha }\) | 0.45700 \(^{\{7\}}\) | 0.38068 \(^{\{4\}}\) | 0.18916 \(^{\{2\}}\) | 0.42425 \(^{\{6\}}\) | 0.15585 \(^{\{1\}}\) | 8.00000 \(^{\{8\}}\) | 0.39933 \(^{\{5\}}\) | 0.34425 \(^{\{3\}}\) |
\(\hat{\beta }\) | 0.35195 \(^{\{3\}}\) | 0.47907 \(^{\{7\}}\) | 0.22324 \(^{\{2\}}\) | 0.47757 \(^{\{6\}}\) | 0.21748 \(^{\{1\}}\) | 0.58784 \(^{\{8\}}\) | 0.37349 \(^{\{4\}}\) | 0.40889 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 0.27922 \(^{\{7\}}\) | 0.17447 \(^{\{4\}}\) | 0.10275 \(^{\{2\}}\) | 0.16728 \(^{\{3\}}\) | 0.09357 \(^{\{1\}}\) | 0.92382 \(^{\{8\}}\) | 0.18674 \(^{\{5\}}\) | 0.20692 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 0.65039 \(^{\{4\}}\) | 0.74067 \(^{\{7\}}\) | 0.28280 \(^{\{2\}}\) | 0.74066 \(^{\{6\}}\) | 0.27836 \(^{\{1\}}\) | 1.07300 \(^{\{8\}}\) | 0.55749 \(^{\{3\}}\) | 0.69247 \(^{\{5\}}\) | ||
\({\hat{b}}\) | 0.75424 \(^{\{5\}}\) | 0.88013 \(^{\{6\}}\) | 0.34005 \(^{\{1\}}\) | 0.95158 \(^{\{7\}}\) | 0.34495 \(^{\{2\}}\) | 1.56713 \(^{\{8\}}\) | 0.68952 \(^{\{3\}}\) | 0.69752 \(^{\{4\}}\) | ||
MSE | \(\hat{\alpha }\) | 0.61419 \(^{\{7\}}\) | 0.33102 \(^{\{4\}}\) | 0.09468 \(^{\{2\}}\) | 0.43840 \(^{\{5\}}\) | 0.07462 \(^{\{1\}}\) | 4.95213 \(^{\{8\}}\) | 0.45935 \(^{\{6\}}\) | 0.32327 \(^{\{3\}}\) | |
\(\hat{\beta }\) | 0.20023 \(^{\{3\}}\) | 0.34194 \(^{\{7\}}\) | 0.10455 \(^{\{1\}}\) | 0.33449 \(^{\{6\}}\) | 0.13594 \(^{\{2\}}\) | 0.50041 \(^{\{8\}}\) | 0.23760 \(^{\{4\}}\) | 0.26315 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 0.17778 \(^{\{7\}}\) | 0.04559 \(^{\{4\}}\) | 0.01777 \(^{\{1\}}\) | 0.04449 \(^{\{3\}}\) | 0.02196 \(^{\{2\}}\) | 88.16119 \(^{\{8\}}\) | 0.05950 \(^{\{5\}}\) | 0.07808 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 1.76911 \(^{\{7\}}\) | 1.27425 \(^{\{6\}}\) | 0.24527 \(^{\{1\}}\) | 1.21132 \(^{\{5\}}\) | 0.31193 \(^{\{2\}}\) | 2.91211 \(^{\{8\}}\) | 0.90346 \(^{\{3\}}\) | 1.14540 \(^{\{4\}}\) | ||
\({\hat{b}}\) | 2.89955 \(^{\{7\}}\) | 1.84740 \(^{\{5\}}\) | 0.39680 \(^{\{1\}}\) | 2.21361 \(^{\{6\}}\) | 0.90606 \(^{\{2\}}\) | 49.11612 \(^{\{8\}}\) | 1.52244 \(^{\{4\}}\) | 1.23049 \(^{\{3\}}\) | ||
MRE | \(\hat{\alpha }\) | 0.91399 \(^{\{7\}}\) | 0.76135 \(^{\{4\}}\) | 0.37831 \(^{\{2\}}\) | 0.84849 \(^{\{6\}}\) | 0.31171 \(^{\{1\}}\) | 1.33575 \(^{\{8\}}\) | 0.79866 \(^{\{5\}}\) | 0.68850 \(^{\{3\}}\) | |
\(\hat{\beta }\) | 0.23463 \(^{\{3\}}\) | 0.31938 \(^{\{7\}}\) | 0.14883 \(^{\{2\}}\) | 0.31838 \(^{\{6\}}\) | 0.14498 \(^{\{1\}}\) | 0.39189 \(^{\{8\}}\) | 0.24900 \(^{\{4\}}\) | 0.27259 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 0.55845 \(^{\{7\}}\) | 0.34894 \(^{\{4\}}\) | 0.20550 \(^{\{2\}}\) | 0.33456 \(^{\{3\}}\) | 0.18713 \(^{\{1\}}\) | 1.84763 \(^{\{8\}}\) | 0.37348 \(^{\{5\}}\) | 0.41384 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 0.59127 \(^{\{4\}}\) | 0.67334 \(^{\{7\}}\) | 0.25709 \(^{\{2\}}\) | 0.67333 \(^{\{6\}}\) | 0.25305 \(^{\{1\}}\) | 0.97545 \(^{\{8\}}\) | 0.50681 \(^{\{3\}}\) | 0.62952 \(^{\{5\}}\) | ||
\({\hat{b}}\) | 0.62853 \(^{\{5\}}\) | 0.73344 \(^{\{6\}}\) | 0.28337 \(^{\{1\}}\) | 0.79298 \(^{\{7\}}\) | 0.28746 \(^{\{2\}}\) | 1.30594 \(^{\{8\}}\) | 0.57460 \(^{\{3\}}\) | 0.58127 \(^{\{4\}}\) | ||
\(\sum {Ranks}\) | 83 \(^{\{7\}}\) | 82 \(^{\{6\}}\) | 24 \(^{\{2\}}\) | 81 \(^{\{5\}}\) | 21 \(^{\{1\}}\) | 120 \(^{\{8\}}\) | 62 \(^{\{3\}}\) | 67 \(^{\{4\}}\) |