Table 7 Numerical values of the KAPLL distribution for θ = (0.5, 1.5, 0.5, 1.3, 1.2)T.
From: A flexible extension of the log-logistic model with diverse failure rate shapes and applications
n | Est. | Param. | MLE | LSE | WLSE | CRVME | MPSE | PCE | ADE | RADE |
|---|---|---|---|---|---|---|---|---|---|---|
50 | |BIAS| | \(\hat{\alpha }\) | 3.93312 \(^{\{7\}}\) | 1.01714 \(^{\{4\}}\) | 0.83242 \(^{\{1\}}\) | 1.04594 \(^{\{5\}}\) | 0.86109 \(^{\{2\}}\) | 9.57785 \(^{\{8\}}\) | 1.00265 \(^{\{3\}}\) | 1.47971 \(^{\{6\}}\) |
\(\hat{\beta }\) | 1.05376 \(^{\{6\}}\) | 0.99863 \(^{\{5\}}\) | 0.80202 \(^{\{2\}}\) | 0.96798 \(^{\{3\}}\) | 1.08363 \(^{\{8\}}\) | 0.73295 \(^{\{1\}}\) | 1.06518 \(^{\{7\}}\) | 0.99262 \(^{\{4\}}\) | ||
\(\hat{\lambda }\) | 2.29374 \(^{\{7\}}\) | 0.79990 \(^{\{3\}}\) | 0.45629 \(^{\{1\}}\) | 0.87379 \(^{\{4\}}\) | 0.89547 \(^{\{5\}}\) | 5.78546 \(^{\{8\}}\) | 0.55845 \(^{\{2\}}\) | 1.10547 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 5.74078 \(^{\{8\}}\) | 1.22598 \(^{\{2\}}\) | 1.35092 \(^{\{4\}}\) | 1.33741 \(^{\{3\}}\) | 1.80774 \(^{\{7\}}\) | 1.01636 \(^{\{1\}}\) | 1.67183 \(^{\{6\}}\) | 1.39469 \(^{\{5\}}\) | ||
\({\hat{b}}\) | 9.03582 \(^{\{7\}}\) | 2.13614 \(^{\{3\}}\) | 1.49371 \(^{\{1\}}\) | 2.36181 \(^{\{5\}}\) | 2.10756 \(^{\{2\}}\) | 9.88831 \(^{\{8\}}\) | 2.18338 \(^{\{4\}}\) | 2.91530 \(^{\{6\}}\) | ||
MSE | \(\hat{\alpha }\) | 455.05529 \(^{\{7\}}\) | 8.94097 \(^{\{2\}}\) | 16.38925 \(^{\{4\}}\) | 8.02337 \(^{\{1\}}\) | 20.95470 \(^{\{5\}}\) | 1474.37252 \(^{\{8\}}\) | 10.68622 \(^{\{3\}}\) | 28.19877 \(^{\{6\}}\) | |
\(\hat{\beta }\) | 2.08534 \(^{\{6\}}\) | 1.71142 \(^{\{4\}}\) | 1.21994 \(^{\{2\}}\) | 1.68813 \(^{\{3\}}\) | 2.97266 \(^{\{8\}}\) | 0.90974 \(^{\{1\}}\) | 2.10723 \(^{\{7\}}\) | 1.82623 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 361.13516 \(^{\{7\}}\) | 4.96876 \(^{\{2\}}\) | 7.60626 \(^{\{4\}}\) | 6.46392 \(^{\{3\}}\) | 45.53682 \(^{\{6\}}\) | 393.36590 \(^{\{8\}}\) | 3.55248 \(^{\{1\}}\) | 14.78641 \(^{\{5\}}\) | ||
\({\hat{a}}\) | 83.78229 \(^{\{8\}}\) | 2.81482 \(^{\{2\}}\) | 4.69174 \(^{\{1\}}\) | 3.39328 \(^{\{3\}}\) | 12.59144 \(^{\{6\}}\) | 2.49430 \(^{\{7\}}\) | 6.07295 \(^{\{4\}}\) | 3.87087 \(^{\{5\}}\) | ||
\({\hat{b}}\) | 1081.38525 \(^{\{7\}}\) | 20.79202 \(^{\{4\}}\) | 12.22512 \(^{\{1\}}\) | 25.87663 \(^{\{5\}}\) | 77.44083 \(^{\{2\}}\) | 871.60132 \(^{\{8\}}\) | 32.42482 \(^{\{3\}}\) | 73.77608 \(^{\{6\}}\) | ||
MRE | \(\hat{\alpha }\) | 7.86624 \(^{\{7\}}\) | 2.03427 \(^{\{4\}}\) | 1.66485 \(^{\{1\}}\) | 2.09187 \(^{\{5\}}\) | 1.72217 \(^{\{2\}}\) | 19.15571 \(^{\{8\}}\) | 2.00531 \(^{\{3\}}\) | 2.95943 \(^{\{6\}}\) | |
\(\hat{\beta }\) | 0.70251 \(^{\{6\}}\) | 0.66575 \(^{\{5\}}\) | 0.53468 \(^{\{2\}}\) | 0.64532 \(^{\{3\}}\) | 0.72242 \(^{\{8\}}\) | 0.48863 \(^{\{1\}}\) | 0.71012 \(^{\{7\}}\) | 0.66174 \(^{\{4\}}\) | ||
\(\hat{\lambda }\) | 4.58748 \(^{\{7\}}\) | 1.59980 \(^{\{3\}}\) | 0.91258 \(^{\{1\}}\) | 1.74757 \(^{\{4\}}\) | 1.79095 \(^{\{5\}}\) | 11.57092 \(^{\{8\}}\) | 1.11690 \(^{\{2\}}\) | 2.21094 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 4.41598 \(^{\{8\}}\) | 0.94306 \(^{\{2\}}\) | 1.03917 \(^{\{4\}}\) | 1.02878 \(^{\{3\}}\) | 1.39057 \(^{\{7\}}\) | 0.78181 \(^{\{1\}}\) | 1.28602 \(^{\{6\}}\) | 1.07284 \(^{\{5\}}\) | ||
\({\hat{b}}\) | 7.52985 \(^{\{7\}}\) | 1.78011 \(^{\{3\}}\) | 1.24476 \(^{\{1\}}\) | 1.96818 \(^{\{5\}}\) | 1.75630 \(^{\{2\}}\) | 8.24026 \(^{\{8\}}\) | 1.81948 \(^{\{4\}}\) | 2.42942 \(^{\{6\}}\) | ||
\(\sum {Ranks}\) | 106 \(^{\{8\}}\) | 46 \(^{\{2\}}\) | 34 \(^{\{1\}}\) | 53 \(^{\{3\}}\) | 80 \(^{\{7\}}\) | 77 \(^{\{5\}}\) | 65 \(^{\{4\}}\) | 79 \(^{\{6\}}\) | ||
100 | |BIAS| | \(\hat{\alpha }\) | 1.24153 \(^{\{7\}}\) | 0.50907 \(^{\{3\}}\) | 0.36319 \(^{\{1\}}\) | 0.59168 \(^{\{5\}}\) | 0.42588 \(^{\{2\}}\) | 3.56225 \(^{\{8\}}\) | 0.55255 \(^{\{4\}}\) | 0.59552 \(^{\{6\}}\) |
\(\hat{\beta }\) | 0.80638 \(^{\{6\}}\) | 0.89233 \(^{\{8\}}\) | 0.56662 \(^{\{1\}}\) | 0.85182 \(^{\{7\}}\) | 0.70281 \(^{\{3\}}\) | 0.67294 \(^{\{2\}}\) | 0.77663 \(^{\{4\}}\) | 0.79657 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 0.65956 \(^{\{7\}}\) | 0.37923 \(^{\{3\}}\) | 0.22310 \(^{\{1\}}\) | 0.43336 \(^{\{6\}}\) | 0.38522 \(^{\{4\}}\) | 4.31181 \(^{\{8\}}\) | 0.31835 \(^{\{2\}}\) | 0.42725 \(^{\{5\}}\) | ||
\({\hat{a}}\) | 3.32806 \(^{\{8\}}\) | 1.20256 \(^{\{4\}}\) | 0.95967 \(^{\{1\}}\) | 1.32971 \(^{\{7\}}\) | 1.16938 \(^{\{3\}}\) | 1.08864 \(^{\{2\}}\) | 1.28651 \(^{\{6\}}\) | 1.24808 \(^{\{5\}}\) | ||
\({\hat{b}}\) | 3.66364 \(^{\{7\}}\) | 1.40726 \(^{\{5\}}\) | 0.98523 \(^{\{1\}}\) | 1.61606 \(^{\{6\}}\) | 1.22079 \(^{\{2\}}\) | 6.32767 \(^{\{8\}}\) | 1.28787 \(^{\{3\}}\) | 1.37300 \(^{\{4\}}\) | ||
MSE | \(\hat{\alpha }\) | 16.68662 \(^{\{7\}}\) | 1.23050 \(^{\{4\}}\) | 0.53242 \(^{\{1\}}\) | 3.04661 \(^{\{6\}}\) | 0.77863 \(^{\{2\}}\) | 217.14918 \(^{\{8\}}\) | 1.13992 \(^{\{3\}}\) | 2.36896 \(^{\{5\}}\) | |
\(\hat{\beta }\) | 1.15750 \(^{\{4\}}\) | 1.32129 \(^{\{8\}}\) | 0.63375 \(^{\{1\}}\) | 1.19286 \(^{\{6\}}\) | 1.29367 \(^{\{7\}}\) | 0.69095 \(^{\{2\}}\) | 1.01849 \(^{\{3\}}\) | 1.16068 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 25.40878 \(^{\{7\}}\) | 0.89816 \(^{\{4\}}\) | 0.09431 \(^{\{1\}}\) | 1.36695 \(^{\{6\}}\) | 0.84141 \(^{\{3\}}\) | 1234.52459 \(^{\{8\}}\) | 0.21901 \(^{\{2\}}\) | 0.95744 \(^{\{5\}}\) | ||
\({\hat{a}}\) | 30.35583 \(^{\{8\}}\) | 2.65161 \(^{\{2\}}\) | 2.61829 \(^{\{1\}}\) | 3.31920 \(^{\{5\}}\) | 6.05689 \(^{\{7\}}\) | 2.96839 \(^{\{3\}}\) | 3.64692 \(^{\{6\}}\) | 3.06725 \(^{\{4\}}\) | ||
\({\hat{b}}\) | 84.47239 \(^{\{7\}}\) | 6.46549 \(^{\{3\}}\) | 3.18586 \(^{\{1\}}\) | 10.41527 \(^{\{6\}}\) | 9.08248 \(^{\{5\}}\) | 2590.68728 \(^{\{8\}}\) | 4.39740 \(^{\{2\}}\) | 7.84346 \(^{\{4\}}\) | ||
MRE | \(\hat{\alpha }\) | 2.48307 \(^{\{7\}}\) | 1.01815 \(^{\{3\}}\) | 0.72637 \(^{\{1\}}\) | 0.65308 \(^{\{6\}}\) | 0.29742 \(^{\{2\}}\) | 1.14904 \(^{\{8\}}\) | 0.57935 \(^{\{4\}}\) | 0.55220 \(^{\{5\}}\) | |
\(\hat{\beta }\) | 0.53758 \(^{\{6\}}\) | 0.59489 \(^{\{8\}}\) | 0.37775 \(^{\{1\}}\) | 0.56788 \(^{\{7\}}\) | 0.46854 \(^{\{3\}}\) | 0.44862 \(^{\{2\}}\) | 0.35670 \(^{\{4\}}\) | 0.36972 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 1.31911 \(^{\{7\}}\) | 0.75846 \(^{\{3\}}\) | 0.44620 \(^{\{1\}}\) | 0.86673 \(^{\{6\}}\) | 0.77043 \(^{\{4\}}\) | 8.62363 \(^{\{8\}}\) | 0.63671 \(^{\{2\}}\) | 0.85450 \(^{\{5\}}\) | ||
\({\hat{a}}\) | 2.56005 \(^{\{8\}}\) | 0.92505 \(^{\{4\}}\) | 0.73821 \(^{\{1\}}\) | 1.02285 \(^{\{7\}}\) | 0.89952 \(^{\{3\}}\) | 0.83741 \(^{\{2\}}\) | 0.98962 \(^{\{6\}}\) | 0.96006 \(^{\{5\}}\) | ||
\({\hat{b}}\) | 3.05303 \(^{\{7\}}\) | 1.17272 \(^{\{5\}}\) | 0.82103 \(^{\{1\}}\) | 1.34672 \(^{\{6\}}\) | 1.01733 \(^{\{2\}}\) | 5.27306 \(^{\{8\}}\) | 1.07322 \(^{\{3\}}\) | 1.14417 \(^{\{4\}}\) | ||
\(\sum {Ranks}\) | 103 \(^{\{8\}}\) | 67 \(^{\{4\}}\) | 15 \(^{\{1\}}\) | 91 \(^{\{7\}}\) | 52 \(^{\{2\}}\) | 85 \(^{\{6\}}\) | 54 \(^{\{3\}}\) | 73 \(^{\{5\}}\) | ||
250 | |BIAS| | \(\hat{\alpha }\) | 0.45154 \(^{\{7\}}\) | 0.36368 \(^{\{4\}}\) | 0.21404 \(^{\{1\}}\) | 0.36893 \(^{\{5\}}\) | 0.24152 \(^{\{2\}}\) | 1.07309 \(^{\{8\}}\) | 0.35666 \(^{\{3\}}\) | 0.38764 \(^{\{6\}}\) |
\(\hat{\beta }\) | 0.48107 \(^{\{3\}}\) | 0.64276 \(^{\{8\}}\) | 0.32441 \(^{\{1\}}\) | 0.63639 \(^{\{7\}}\) | 0.39594 \(^{\{2\}}\) | 0.63393 \(^{\{6\}}\) | 0.53506 \(^{\{4\}}\) | 0.55458 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 0.28746 \(^{\{7\}}\) | 0.21215 \(^{\{4\}}\) | 0.13752 \(^{\{1\}}\) | 0.21120 \(^{\{3\}}\) | 0.18756 \(^{\{2\}}\) | 1.21756 \(^{\{8\}}\) | 0.22315 \(^{\{5\}}\) | 0.26008 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 1.62851 \(^{\{8\}}\) | 1.05386 \(^{\{4\}}\) | 0.57234 \(^{\{1\}}\) | 1.09009 \(^{\{7\}}\) | 0.60794 \(^{\{2\}}\) | 1.05833 \(^{\{5\}}\) | 0.98189 \(^{\{3\}}\) | 1.08570 \(^{\{6\}}\) | ||
\({\hat{b}}\) | 1.33138 \(^{\{7\}}\) | 1.03592 \(^{\{5\}}\) | 0.56036 \(^{\{1\}}\) | 1.09034 \(^{\{6\}}\) | 0.66999 \(^{\{2\}}\) | 1.89716 \(^{\{8\}}\) | 0.87844 \(^{\{3\}}\) | 0.91333 \(^{\{4\}}\) | ||
MSE | \(\hat{\alpha }\) | 0.73770 \(^{\{7\}}\) | 0.28090 \(^{\{3\}}\) | 0.09846 \(^{\{1\}}\) | 0.29619 \(^{\{4\}}\) | 0.16049 \(^{\{2\}}\) | 23.65790 \(^{\{8\}}\) | 0.37411 \(^{\{5\}}\) | 0.46541 \(^{\{6\}}\) | |
\(\hat{\beta }\) | 0.37105 \(^{\{2\}}\) | 0.62392 \(^{\{8\}}\) | 0.21024 \(^{\{1\}}\) | 0.61582 \(^{\{7\}}\) | 0.43261 \(^{\{3\}}\) | 0.61439 \(^{\{6\}}\) | 0.50622 \(^{\{5\}}\) | 0.50418 \(^{\{4\}}\) | ||
\(\hat{\lambda }\) | 0.19568 \(^{\{7\}}\) | 0.07986 \(^{\{2\}}\) | 0.03581 \(^{\{1\}}\) | 0.08064 \(^{\{3\}}\) | 0.08487 \(^{\{4\}}\) | 80.70630 \(^{\{8\}}\) | 0.08833 \(^{\{5\}}\) | 0.14179 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 9.33550 \(^{\{8\}}\) | 2.13198 \(^{\{3\}}\) | 1.06111 \(^{\{1\}}\) | 2.34296 \(^{\{5\}}\) | 1.74541 \(^{\{2\}}\) | 2.85968 \(^{\{7\}}\) | 2.39320 \(^{\{6\}}\) | 2.25930 \(^{\{4\}}\) | ||
\({\hat{b}}\) | 7.32543 \(^{\{7\}}\) | 2.45706 \(^{\{4\}}\) | 1.14393 \(^{\{1\}}\) | 2.69180 \(^{\{5\}}\) | 3.92688 \(^{\{6\}}\) | 60.56412 \(^{\{8\}}\) | 2.08155 \(^{\{3\}}\) | 1.90151 \(^{\{2\}}\) | ||
MRE | \(\hat{\alpha }\) | 0.90308 \(^{\{7\}}\) | 0.72736 \(^{\{4\}}\) | 0.42807 \(^{\{2\}}\) | 0.73785 \(^{\{5\}}\) | 0.29742 \(^{\{1\}}\) | 2.14617 \(^{\{8\}}\) | 0.71332 \(^{\{3\}}\) | 0.77529 \(^{\{6\}}\) | |
\(\hat{\beta }\) | 0.32072 \(^{\{3\}}\) | 0.42850 \(^{\{8\}}\) | 0.21627 \(^{\{2\}}\) | 0.42426 \(^{\{7\}}\) | 0.13509 \(^{\{1\}}\) | 0.39663 \(^{\{8\}}\) | 0.25141 \(^{\{4\}}\) | 0.27933 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 0.57491 \(^{\{7\}}\) | 0.32904 \(^{\{4\}}\) | 0.19195 \(^{\{1\}}\) | 0.32292 \(^{\{3\}}\) | 0.20629 \(^{\{2\}}\) | 1.10149 \(^{\{8\}}\) | 0.35804 \(^{\{5\}}\) | 0.40727 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 0.63300 \(^{\{5\}}\) | 0.68519 \(^{\{6\}}\) | 0.26245 \(^{\{2\}}\) | 0.69799 \(^{\{7\}}\) | 0.23609 \(^{\{1\}}\) | 0.83696 \(^{\{8\}}\) | 0.52349 \(^{\{3\}}\) | 0.63186 \(^{\{4\}}\) | ||
\({\hat{b}}\) | 0.58632 \(^{\{5\}}\) | 0.68100 \(^{\{6\}}\) | 0.27224 \(^{\{2\}}\) | 0.73277 \(^{\{7\}}\) | 0.25848 \(^{\{1\}}\) | 1.01292 \(^{\{8\}}\) | 0.52224 \(^{\{3\}}\) | 0.53229 \(^{\{4\}}\) | ||
\(\sum {Ranks}\) | 95 \(^{\{7\}}\) | 70 \(^{\{4\}}\) | 18 \(^{\{1\}}\) | 80 \(^{\{6\}}\) | 34 \(^{\{2\}}\) | 107 \(^{\{8\}}\) | 60 \(^{\{3\}}\) | 76 \(^{\{5\}}\) | ||
500 | |BIAS| | \(\hat{\alpha }\) | 0.35885 \(^{\{7\}}\) | 0.30070 \(^{\{5\}}\) | 0.14756 \(^{\{1\}}\) | 0.32654 \(^{\{6\}}\) | 0.14871 \(^{\{2\}}\) | 8.00000 \(^{\{8\}}\) | 0.28968 \(^{\{4\}}\) | 0.27610 \(^{\{3\}}\) |
\(\hat{\beta }\) | 0.34982 \(^{\{3\}}\) | 0.48291 \(^{\{6\}}\) | 0.21401 \(^{\{2\}}\) | 0.48327 \(^{\{7\}}\) | 0.20264 \(^{\{1\}}\) | 0.59495 \(^{\{8\}}\) | 0.37712 \(^{\{4\}}\) | 0.41900 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 0.27474 \(^{\{7\}}\) | 0.16452 \(^{\{4\}}\) | 0.09598 \(^{\{1\}}\) | 0.16146 \(^{\{3\}}\) | 0.10314 \(^{\{2\}}\) | 0.55075 \(^{\{8\}}\) | 0.17902 \(^{\{5\}}\) | 0.20364 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 0.82290 \(^{\{5\}}\) | 0.89074 \(^{\{6\}}\) | 0.34118 \(^{\{2\}}\) | 0.90739 \(^{\{7\}}\) | 0.30692 \(^{\{1\}}\) | 1.08804 \(^{\{8\}}\) | 0.68054 \(^{\{3\}}\) | 0.82142 \(^{\{4\}}\) | ||
\({\hat{b}}\) | 0.70358 \(^{\{5\}}\) | 0.81720 \(^{\{6\}}\) | 0.32668 \(^{\{2\}}\) | 0.87932 \(^{\{7\}}\) | 0.31018 \(^{\{1\}}\) | 1.21551 \(^{\{8\}}\) | 0.62668 \(^{\{3\}}\) | 0.63875 \(^{\{4\}}\) | ||
MSE | \(\hat{\alpha }\) | 0.29257 \(^{\{7\}}\) | 0.21993 \(^{\{5\}}\) | 0.04636 \(^{\{1\}}\) | 0.24856 \(^{\{6\}}\) | 0.06675 \(^{\{2\}}\) | 1.96818 \(^{\{8\}}\) | 0.19921 \(^{\{4\}}\) | 0.17010 \(^{\{3\}}\) | |
\(\hat{\beta }\) | 0.19410 \(^{\{3\}}\) | 0.34633 \(^{\{7\}}\) | 0.09831 \(^{\{1\}}\) | 0.34434 \(^{\{6\}}\) | 0.13022 \(^{\{2\}}\) | 0.52823 \(^{\{8\}}\) | 0.24468 \(^{\{4\}}\) | 0.27192 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 0.17655 \(^{\{7\}}\) | 0.04480 \(^{\{4\}}\) | 0.01452 \(^{\{1\}}\) | 0.04181 \(^{\{3\}}\) | 0.02604 \(^{\{2\}}\) | 1.42854 \(^{\{8\}}\) | 0.05935 \(^{\{5\}}\) | 0.08624 \(^{\{6\}}\) | ||
\(\hat{a}\) | 2.55423 \(^{\{7\}}\) | 1.65318 \(^{\{5\}}\) | 0.39050 \(^{\{1\}}\) | 1.68069 \(^{\{6\}}\) | 0.41505 \(^{\{2\}}\) | 2.82497 \(^{\{8\}}\) | 1.21969 \(^{\{3\}}\) | 1.40095 \(^{\{4\}}\) | ||
\(\hat{b}\) | 2.39326 \(^{\{7\}}\) | 1.48191 \(^{\{5\}}\) | 0.35758 \(^{\{1\}}\) | 1.74645 \(^{\{6\}}\) | 0.59674 \(^{\{2\}}\) | 3.97401 \(^{\{8\}}\) | 1.12441 \(^{\{4\}}\) | 0.91611 \(^{\{3\}}\) | ||
MRE | \(\hat{\alpha }\) | 0.71769 \(^{\{7\}}\) | 0.60141 \(^{\{5\}}\) | 0.29512 \(^{\{1\}}\) | 0.65308 \(^{\{6\}}\) | 0.29742 \(^{\{2\}}\) | 1.14904 \(^{\{8\}}\) | 0.57935 \(^{\{4\}}\) | 0.55220 \(^{\{3\}}\) | |
\(\hat{\beta }\) | 0.23321 \(^{\{3\}}\) | 0.32194 \(^{\{6\}}\) | 0.14267 \(^{\{2\}}\) | 0.32218 \(^{\{7\}}\) | 0.13509 \(^{\{1\}}\) | 0.39663 \(^{\{8\}}\) | 0.25141 \(^{\{4\}}\) | 0.27933 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 0.54947 \(^{\{7\}}\) | 0.32904 \(^{\{4\}}\) | 0.19195 \(^{\{1\}}\) | 0.32292 \(^{\{3\}}\) | 0.20629 \(^{\{2\}}\) | 1.10149 \(^{\{8\}}\) | 0.35804 \(^{\{5\}}\) | 0.40727 \(^{\{6\}}\) | ||
\(\hat{a}\) | 0.63300 \(^{\{5\}}\) | 0.68519 \(^{\{6\}}\) | 0.26245 \(^{\{2\}}\) | 0.69799 \(^{\{7\}}\) | 0.23609 \(^{\{1\}}\) | 0.83696 \(^{\{8\}}\) | 0.52349 \(^{\{3\}}\) | 0.63186 \(^{\{4\}}\) | ||
\(\hat{b}\) | 0.58632 \(^{\{5\}}\) | 0.68100 \(^{\{6\}}\) | 0.27224 \(^{\{2\}}\) | 0.73277 \(^{\{7\}}\) | 0.25848 \(^{\{1\}}\) | 1.01292 \(^{\{8\}}\) | 0.52224 \(^{\{3\}}\) | 0.53229 \(^{\{4\}}\) | ||
\(\sum {Ranks}\) | 85 \(^{\{6\}}\) | 80 \(^{\{5\}}\) | 21 \(^{\{1\}}\) | 87 \(^{\{7\}}\) | 24 \(^{\{2\}}\) | 120 \(^{\{8\}}\) | 58 \(^{\{3\}}\) | 65 \(^{\{4\}}\) |