Table 9 Numerical values of the KAPLL distribution for θ = (0.5, 1.5, 0.75, 0.6, 0.5)T.
From: A flexible extension of the log-logistic model with diverse failure rate shapes and applications
n | Est. | Param. | MLE | LSE | WLSE | CRVME | MPSE | PCE | ADE | RADE |
|---|---|---|---|---|---|---|---|---|---|---|
50 | |BIAS| | \(\hat{\alpha }\) | 2.90857 \(^{\{7\}}\) | 1.22842 \(^{\{4\}}\) | 1.00526 \(^{\{2\}}\) | 1.79282 \(^{\{5\}}\) | 0.83292 \(^{\{1\}}\) | 4.89560 \(^{\{8\}}\) | 1.09398 \(^{\{3\}}\) | 1.90487 \(^{\{6\}}\) |
\(\hat{\beta }\) | 0.82589 \(^{\{4\}}\) | 0.99989 \(^{\{8\}}\) | 0.66345 \(^{\{2\}}\) | 0.92154 \(^{\{7\}}\) | 0.91364 \(^{\{6\}}\) | 0.49144 \(^{\{1\}}\) | 0.84217 \(^{\{5\}}\) | 0.82534 \(^{\{3\}}\) | ||
\(\hat{\lambda }\) | 3.13493 \(^{\{7\}}\) | 1.05086 \(^{\{4\}}\) | 0.85252 \(^{\{1\}}\) | 1.47774 \(^{\{5\}}\) | 1.01798 \(^{\{3\}}\) | 7.55158 \(^{\{8\}}\) | 0.92569 \(^{\{2\}}\) | 2.93827 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 2.87125 \(^{\{8\}}\) | 0.79138 \(^{\{3\}}\) | 0.66428 \(^{\{2\}}\) | 0.97617 \(^{\{6\}}\) | 1.16550 \(^{\{7\}}\) | 0.50244 \(^{\{1\}}\) | 0.92428 \(^{\{5\}}\) | 0.91783 \(^{\{4\}}\) | ||
\({\hat{b}}\) | 2.53118 \(^{\{8\}}\) | 0.77439 \(^{\{3\}}\) | 0.55727 \(^{\{1\}}\) | 0.99909 \(^{\{5\}}\) | 0.94477 \(^{\{4\}}\) | 2.46564 \(^{\{7\}}\) | 0.74759 \(^{\{2\}}\) | 1.21091 \(^{\{6\}}\) | ||
MSE | \(\hat{\alpha }\) | 531.40926 \(^{\{8\}}\) | 49.64205 \(^{\{4\}}\) | 21.67096 \(^{\{2\}}\) | 224.83942 \(^{\{5\}}\) | 42.40955 \(^{\{3\}}\) | 355.90411 \(^{\{7\}}\) | 11.90844 \(^{\{1\}}\) | 278.31952 \(^{\{6\}}\) | |
\(\hat{\beta }\) | 1.04045 \(^{\{3\}}\) | 1.75791 \(^{\{8\}}\) | 0.84114 \(^{\{2\}}\) | 1.40113 \(^{\{6\}}\) | 1.52433 \(^{\{7\}}\) | 0.39204 \(^{\{1\}}\) | 1.20348 \(^{\{5\}}\) | 1.07041 \(^{\{4\}}\) | ||
\(\hat{\lambda }\) | 2290.39863 \(^{\{8\}}\) | 36.72915 \(^{\{3\}}\) | 8.90711 \(^{\{1\}}\) | 188.77097 \(^{\{5\}}\) | 81.90253 \(^{\{4\}}\) | 518.44224 \(^{\{6\}}\) | 17.30250 \(^{\{2\}}\) | 1049.53033 \(^{\{7\}}\) | ||
\({\hat{a}}\) | 34.96166 \(^{\{8\}}\) | 1.70296 \(^{\{3\}}\) | 1.63230 \(^{\{1\}}\) | 2.57092 \(^{\{5\}}\) | 8.06744 \(^{\{4\}}\) | 1.12744 \(^{\{7\}}\) | 2.71833 \(^{\{2\}}\) | 2.33411 \(^{\{6\}}\) | ||
\({\hat{b}}\) | 228.98944 \(^{\{7\}}\) | 6.02364 \(^{\{4\}}\) | 1.95820 \(^{\{2\}}\) | 25.45254 \(^{\{5\}}\) | 8.57837 \(^{\{1\}}\) | 66.15547 \(^{\{8\}}\) | 3.77918 \(^{\{3\}}\) | 56.07007 \(^{\{6\}}\) | ||
MRE | \(\hat{\alpha }\) | 5.81713 \(^{\{7\}}\) | 2.45683 \(^{\{4\}}\) | 2.01051 \(^{\{2\}}\) | 3.58564 \(^{\{5\}}\) | 1.66585 \(^{\{1\}}\) | 9.79119 \(^{\{8\}}\) | 2.18795 \(^{\{3\}}\) | 3.80973 \(^{\{6\}}\) | |
\(\hat{\beta }\) | 0.55059 \(^{\{4\}}\) | 0.66659 \(^{\{8\}}\) | 0.44230 \(^{\{2\}}\) | 0.61436 \(^{\{7\}}\) | 0.60909 \(^{\{6\}}\) | 0.32763 \(^{\{1\}}\) | 0.56144 \(^{\{5\}}\) | 0.55023 \(^{\{3\}}\) | ||
\(\hat{\lambda }\) | 4.17991 \(^{\{7\}}\) | 1.40114 \(^{\{4\}}\) | 1.13669 \(^{\{1\}}\) | 1.97032 \(^{\{5\}}\) | 1.35731 \(^{\{3\}}\) | 10.06877 \(^{\{8\}}\) | 1.23425 \(^{\{2\}}\) | 3.91770 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 4.78541 \(^{\{8\}}\) | 1.31896 \(^{\{3\}}\) | 1.10714 \(^{\{2\}}\) | 1.62695 \(^{\{6\}}\) | 1.94250 \(^{\{7\}}\) | 0.83740 \(^{\{1\}}\) | 1.54047 \(^{\{5\}}\) | 1.52972 \(^{\{4\}}\) | ||
\({\hat{b}}\) | 5.06236 \(^{\{8\}}\) | 1.54879 \(^{\{3\}}\) | 1.11454 \(^{\{1\}}\) | 1.99817 \(^{\{5\}}\) | 1.88953 \(^{\{4\}}\) | 4.93129 \(^{\{7\}}\) | 1.49518 \(^{\{2\}}\) | 2.42183 \(^{\{6\}}\) | ||
\(\sum {Ranks}\) | 103 \(^{\{8\}}\) | 65 \(^{\{3\}}\) | 24 \(^{\{1\}}\) | 82 \(^{\{7\}}\) | 67 \(^{\{4\}}\) | 72 \(^{\{5\}}\) | 50 \(^{\{2\}}\) | 77 \(^{\{6\}}\) | ||
100 | |BIAS| | \(\hat{\alpha }\) | 1.07088 \(^{\{7\}}\) | 0.62198 \(^{\{4\}}\) | 0.44930 \(^{\{2\}}\) | 0.66856 \(^{\{6\}}\) | 0.34291 \(^{\{1\}}\) | 2.63029 \(^{\{8\}}\) | 0.65040 \(^{\{5\}}\) | 0.59401 \(^{\{3\}}\) |
\(\hat{\beta }\) | 0.64445 \(^{\{5\}}\) | 0.72886 \(^{\{7\}}\) | 0.46458 \(^{\{2\}}\) | 0.73665 \(^{\{8\}}\) | 0.66613 \(^{\{6\}}\) | 0.44619 \(^{\{1\}}\) | 0.57810 \(^{\{3\}}\) | 0.62353 \(^{\{4\}}\) | ||
\(\hat{\lambda }\) | 0.71471 \(^{\{7\}}\) | 0.56536 \(^{\{4\}}\) | 0.49202 \(^{\{2\}}\) | 0.55993 \(^{\{3\}}\) | 0.38894 \(^{\{1\}}\) | 4.39275 \(^{\{8\}}\) | 0.57973 \(^{\{5\}}\) | 0.64209 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 1.34586 \(^{\{8\}}\) | 0.70769 \(^{\{5\}}\) | 0.43194 \(^{\{1\}}\) | 0.79781 \(^{\{7\}}\) | 0.52980 \(^{\{2\}}\) | 0.67406 \(^{\{4\}}\) | 0.60647 \(^{\{3\}}\) | 0.75193 \(^{\{6\}}\) | ||
\({\hat{b}}\) | 0.89239 \(^{\{7\}}\) | 0.48625 \(^{\{5\}}\) | 0.33148 \(^{\{1\}}\) | 0.61587 \(^{\{6\}}\) | 0.43611 \(^{\{3\}}\) | 1.06133 \(^{\{8\}}\) | 0.40707 \(^{\{2\}}\) | 0.45342 \(^{\{4\}}\) | ||
MSE | \(\hat{\alpha }\) | 25.94600 \(^{\{7\}}\) | 2.04009 \(^{\{5\}}\) | 0.95218 \(^{\{2\}}\) | 1.37902 \(^{\{3\}}\) | 0.25008 \(^{\{1\}}\) | 98.43325 \(^{\{8\}}\) | 2.16820 \(^{\{6\}}\) | 1.68689 \(^{\{4\}}\) | |
\(\hat{\beta }\) | 0.61986 \(^{\{4\}}\) | 0.90178 \(^{\{8\}}\) | 0.41049 \(^{\{2\}}\) | 0.88131 \(^{\{7\}}\) | 0.82344 \(^{\{6\}}\) | 0.31821 \(^{\{1\}}\) | 0.55808 \(^{\{3\}}\) | 0.62913 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 1.89292 \(^{\{7\}}\) | 0.63732 \(^{\{3\}}\) | 0.62856 \(^{\{2\}}\) | 0.89926 \(^{\{5\}}\) | 0.39868 \(^{\{1\}}\) | 221.29767 \(^{\{8\}}\) | 0.73840 \(^{\{4\}}\) | 0.95177 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 7.88808 \(^{\{8\}}\) | 1.38746 \(^{\{3\}}\) | 0.79083 \(^{\{1\}}\) | 1.66226 \(^{\{6\}}\) | 1.48858 \(^{\{4\}}\) | 2.46499 \(^{\{7\}}\) | 1.32767 \(^{\{2\}}\) | 1.62387 \(^{\{5\}}\) | ||
\({\hat{b}}\) | 5.37620 \(^{\{7\}}\) | 0.74403 \(^{\{4\}}\) | 0.55886 \(^{\{1\}}\) | 1.18140 \(^{\{5\}}\) | 1.67507 \(^{\{6\}}\) | 15.27756 \(^{\{8\}}\) | 0.68384 \(^{\{2\}}\) | 0.74061 \(^{\{3\}}\) | ||
MRE | \(\hat{\alpha }\) | 2.14177 \(^{\{7\}}\) | 1.24396 \(^{\{4\}}\) | 0.89860 \(^{\{2\}}\) | 1.33711 \(^{\{6\}}\) | 0.68583 \(^{\{1\}}\) | 5.26057 \(^{\{8\}}\) | 1.30079 \(^{\{5\}}\) | 1.18803 \(^{\{3\}}\) | |
\(\hat{\beta }\) | 0.42963 \(^{\{5\}}\) | 0.48590 \(^{\{7\}}\) | 0.30972 \(^{\{2\}}\) | 0.49110 \(^{\{8\}}\) | 0.44409 \(^{\{6\}}\) | 0.29746 \(^{\{1\}}\) | 0.38540 \(^{\{3\}}\) | 0.41569 \(^{\{4\}}\) | ||
\(\hat{\lambda }\) | 0.95295 \(^{\{7\}}\) | 0.75381 \(^{\{4\}}\) | 0.65602 \(^{\{2\}}\) | 0.74657 \(^{\{3\}}\) | 0.51858 \(^{\{1\}}\) | 5.85700 \(^{\{8\}}\) | 0.77297 \(^{\{5\}}\) | 0.85612 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 2.24310 \(^{\{8\}}\) | 1.17949 \(^{\{5\}}\) | 0.71989 \(^{\{1\}}\) | 1.32968 \(^{\{7\}}\) | 0.88300 \(^{\{2\}}\) | 1.12344 \(^{\{4\}}\) | 1.01078 \(^{\{3\}}\) | 1.25322 \(^{\{6\}}\) | ||
\({\hat{b}}\) | 1.78478 \(^{\{7\}}\) | 0.97250 \(^{\{5\}}\) | 0.66297 \(^{\{1\}}\) | 1.23174 \(^{\{6\}}\) | 0.87223 \(^{\{3\}}\) | 2.12266 \(^{\{8\}}\) | 0.81414 \(^{\{2\}}\) | 0.90684 \(^{\{4\}}\) | ||
\(\sum {Ranks}\) | 101 \(^{\{8\}}\) | 73 \(^{\{5\}}\) | 24 \(^{\{1\}}\) | 86 \(^{\{6\}}\) | 44 \(^{\{2\}}\) | 90 \(^{\{7\}}\) | 53 \(^{\{3\}}\) | 69 \(^{\{4\}}\) | ||
250 | |BIAS| | \(\hat{\alpha }\) | 0.56287 \(^{\{7\}}\) | 0.44686 \(^{\{4\}}\) | 0.23867 \(^{\{2\}}\) | 0.44941 \(^{\{5\}}\) | 0.19324 \(^{\{1\}}\) | 1.38295 \(^{\{8\}}\) | 0.49578 \(^{\{6\}}\) | 0.42810 \(^{\{3\}}\) |
\(\hat{\beta }\) | 0.40230 \(^{\{5\}}\) | 0.48239 \(^{\{8\}}\) | 0.25857 \(^{\{1\}}\) | 0.47287 \(^{\{7\}}\) | 0.38439 \(^{\{2\}}\) | 0.39727 \(^{\{4\}}\) | 0.38443 \(^{\{3\}}\) | 0.42399 \(^{\{6\}}\) | ||
\(\hat{\lambda }\) | 0.54412 \(^{\{7\}}\) | 0.42275 \(^{\{4\}}\) | 0.27435 \(^{\{2\}}\) | 0.41514 \(^{\{3\}}\) | 0.18875 \(^{\{1\}}\) | 2.23589 \(^{\{8\}}\) | 0.47022 \(^{\{5\}}\) | 0.51823 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 0.40746 \(^{\{4\}}\) | 0.44588 \(^{\{5\}}\) | 0.20477 \(^{\{1\}}\) | 0.47617 \(^{\{6\}}\) | 0.25153 \(^{\{2\}}\) | 0.87951 \(^{\{8\}}\) | 0.31189 \(^{\{3\}}\) | 0.50607 \(^{\{7\}}\) | ||
\({\hat{b}}\) | 0.25904 \(^{\{4\}}\) | 0.30711 \(^{\{6\}}\) | 0.14639 \(^{\{1\}}\) | 0.31505 \(^{\{7\}}\) | 0.16286 \(^{\{2\}}\) | 0.39706 \(^{\{8\}}\) | 0.22334 \(^{\{3\}}\) | 0.28871 \(^{\{5\}}\) | ||
MSE | \(\hat{\alpha }\) | 3.68958 \(^{\{7\}}\) | 0.52678 \(^{\{3\}}\) | 0.10008 \(^{\{2\}}\) | 0.53647 \(^{\{4\}}\) | 0.05861 \(^{\{1\}}\) | 19.59192 \(^{\{8\}}\) | 0.80459 \(^{\{6\}}\) | 0.60588 \(^{\{5\}}\) | |
\(\hat{\beta }\) | 0.24612 \(^{\{3\}}\) | 0.39810 \(^{\{8\}}\) | 0.13075 \(^{\{1\}}\) | 0.35900 \(^{\{7\}}\) | 0.28482 \(^{\{5\}}\) | 0.28003 \(^{\{4\}}\) | 0.24287 \(^{\{2\}}\) | 0.28842 \(^{\{6\}}\) | ||
\(\hat{\lambda }\) | 0.71841 \(^{\{7\}}\) | 0.30884 \(^{\{4\}}\) | 0.18572 \(^{\{2\}}\) | 0.29863 \(^{\{3\}}\) | 0.11549 \(^{\{1\}}\) | 115.47011 \(^{\{8\}}\) | 0.46093 \(^{\{5\}}\) | 0.65328 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 0.61835 \(^{\{4\}}\) | 0.62015 \(^{\{5\}}\) | 0.15031 \(^{\{1\}}\) | 0.70440 \(^{\{6\}}\) | 0.29737 \(^{\{3\}}\) | 4.28709 \(^{\{8\}}\) | 0.28427 \(^{\{2\}}\) | 0.78647 \(^{\{7\}}\) | ||
\({\hat{b}}\) | 0.30876 \(^{\{6\}}\) | 0.29085 \(^{\{5\}}\) | 0.08705 \(^{\{2\}}\) | 0.31608 \(^{\{7\}}\) | 0.07992 \(^{\{1\}}\) | 1.48625 \(^{\{8\}}\) | 0.16834 \(^{\{3\}}\) | 0.27586 \(^{\{4\}}\) | ||
MRE | \(\hat{\alpha }\) | 1.12574 \(^{\{7\}}\) | 0.89372 \(^{\{4\}}\) | 0.47734 \(^{\{2\}}\) | 0.89883 \(^{\{5\}}\) | 0.26955 \(^{\{1\}}\) | 2.76590 \(^{\{8\}}\) | 0.99156 \(^{\{6\}}\) | 0.85620 \(^{\{3\}}\) | |
\(\hat{\beta }\) | 0.26820 \(^{\{5\}}\) | 0.32160 \(^{\{8\}}\) | 0.17238 \(^{\{2\}}\) | 0.31525 \(^{\{7\}}\) | 0.16130 \(^{\{1\}}\) | 0.26485 \(^{\{4\}}\) | 0.25629 \(^{\{3\}}\) | 0.28266 \(^{\{6\}}\) | ||
\(\hat{\lambda }\) | 0.72549 \(^{\{7\}}\) | 0.56366 \(^{\{4\}}\) | 0.36579 \(^{\{2\}}\) | 0.55352 \(^{\{3\}}\) | 0.14785 \(^{\{1\}}\) | 2.98118 \(^{\{8\}}\) | 0.62696 \(^{\{5\}}\) | 0.69097 \(^{\{6\}}\) | ||
\({\hat{a}}\) | 0.67911 \(^{\{4\}}\) | 0.74314 \(^{\{5\}}\) | 0.34128 \(^{\{1\}}\) | 0.79362 \(^{\{6\}}\) | 0.41922 \(^{\{2\}}\) | 1.46584 \(^{\{8\}}\) | 0.51982 \(^{\{3\}}\) | 0.84345 \(^{\{7\}}\) | ||
\({\hat{b}}\) | 0.51808 \(^{\{4\}}\) | 0.61422 \(^{\{6\}}\) | 0.29277 \(^{\{1\}}\) | 0.63010 \(^{\{7\}}\) | 0.32571 \(^{\{2\}}\) | 0.79412 \(^{\{8\}}\) | 0.44667 \(^{\{3\}}\) | 0.57742 \(^{\{5\}}\) | ||
\(\sum {Ranks}\) | 81 \(^{\{5\}}\) | 79 \(^{\{4\}}\) | 23 \(^{\{1\}}\) | 83 \(^{\{7\}}\) | 26 \(^{\{2\}}\) | 108 \(^{\{8\}}\) | 58 \(^{\{3\}}\) | 82 \(^{\{6\}}\) | ||
500 | |BIAS| | \(\hat{\alpha }\) | 0.35357 \(^{\{4\}}\) | 0.36374 \(^{\{6\}}\) | 0.17285 \(^{\{2\}}\) | 0.37030 \(^{\{7\}}\) | 0.13478 \(^{\{1\}}\) | 8.00000 \(^{\{8\}}\) | 0.35495 \(^{\{5\}}\) | 0.31465 \(^{\{3\}}\) |
\(\hat{\beta }\) | 0.30556 \(^{\{4\}}\) | 0.34570 \(^{\{7\}}\) | 0.17627 \(^{\{1\}}\) | 0.32521 \(^{\{5\}}\) | 0.24195 \(^{\{2\}}\) | 0.37764 \(^{\{8\}}\) | 0.28503 \(^{\{3\}}\) | 0.32710 \(^{\{6\}}\) | ||
\(\hat{\lambda }\) | 0.52884 \(^{\{7\}}\) | 0.36884 \(^{\{3\}}\) | 0.18028 \(^{\{2\}}\) | 0.38021 \(^{\{4\}}\) | 0.11089 \(^{\{1\}}\) | 1.97140 \(^{\{8\}}\) | 0.39543 \(^{\{5\}}\) | 0.42642 \(^{\{6\}}\) | ||
\(\hat{a}\) | 0.23268 \(^{\{4\}}\) | 0.28645 \(^{\{6\}}\) | 0.12057 \(^{\{1\}}\) | 0.27005 \(^{\{5\}}\) | 0.15481 \(^{\{2\}}\) | 0.61507 \(^{\{8\}}\) | 0.20101 \(^{\{3\}}\) | 0.31954 \(^{\{7\}}\) | ||
\(\hat{b}\) | 0.14161 \(^{\{4\}}\) | 0.19432 \(^{\{7\}}\) | 0.08525 \(^{\{1\}}\) | 0.19033 \(^{\{6\}}\) | 0.10283 \(^{\{2\}}\) | 0.57555 \(^{\{8\}}\) | 0.13726 \(^{\{3\}}\) | 0.17547 \(^{\{5\}}\) | ||
MSE | \(\hat{\alpha }\) | 0.19244 \(^{\{4\}}\) | 0.30280 \(^{\{6\}}\) | 0.05171 \(^{\{2\}}\) | 0.35495 \(^{\{7\}}\) | 0.02902 \(^{\{1\}}\) | 51.12266 \(^{\{8\}}\) | 0.19634 \(^{\{5\}}\) | 0.16377 \(^{\{3\}}\) | |
\(\hat{\beta }\) | 0.14285 \(^{\{4\}}\) | 0.20492 \(^{\{7\}}\) | 0.06365 \(^{\{1\}}\) | 0.18131 \(^{\{6\}}\) | 0.11682 \(^{\{2\}}\) | 0.24380 \(^{\{8\}}\) | 0.12794 \(^{\{3\}}\) | 0.16612 \(^{\{5\}}\) | ||
\(\hat{\lambda }\) | 0.67324 \(^{\{7\}}\) | 0.24360 \(^{\{3\}}\) | 0.07777 \(^{\{2\}}\) | 0.26126 \(^{\{4\}}\) | 0.03325 \(^{\{1\}}\) | 84.23066 \(^{\{8\}}\) | 0.33924 \(^{\{5\}}\) | 0.42776 \(^{\{6\}}\) | ||
\(\hat{a}\) | 0.12854 \(^{\{4\}}\) | 0.24103 \(^{\{6\}}\) | 0.03816 \(^{\{1\}}\) | 0.21001 \(^{\{5\}}\) | 0.04518 \(^{\{2\}}\) | 1.70006 \(^{\{8\}}\) | 0.09966 \(^{\{3\}}\) | 0.31236 \(^{\{7\}}\) | ||
\(\hat{b}\) | 0.04448 \(^{\{4\}}\) | 0.11285 \(^{\{6\}}\) | 0.01859 \(^{\{1\}}\) | 0.11422 \(^{\{7\}}\) | 0.02323 \(^{\{2\}}\) | 7.94497 \(^{\{8\}}\) | 0.04441 \(^{\{3\}}\) | 0.07889 \(^{\{5\}}\) | ||
MRE | \(\hat{\alpha }\) | 0.70715 \(^{\{4\}}\) | 0.72747 \(^{\{6\}}\) | 0.34570 \(^{\{2\}}\) | 0.74060 \(^{\{7\}}\) | 0.26955 \(^{\{1\}}\) | 2.45739 \(^{\{8\}}\) | 0.70989 \(^{\{5\}}\) | 0.62931 \(^{\{3\}}\) | |
\(\hat{\beta }\) | 0.20371 \(^{\{4\}}\) | 0.23047 \(^{\{7\}}\) | 0.11752 \(^{\{1\}}\) | 0.21680 \(^{\{5\}}\) | 0.16130 \(^{\{2\}}\) | 0.25176 \(^{\{8\}}\) | 0.19002 \(^{\{3\}}\) | 0.21807 \(^{\{6\}}\) | ||
\(\hat{\lambda }\) | 0.70511 \(^{\{7\}}\) | 0.49178 \(^{\{3\}}\) | 0.24037 \(^{\{2\}}\) | 0.50695 \(^{\{4\}}\) | 0.14785 \(^{\{1\}}\) | 2.62853 \(^{\{8\}}\) | 0.52725 \(^{\{5\}}\) | 0.56856 \(^{\{6\}}\) | ||
\(\hat{a}\) | 0.38780 \(^{\{4\}}\) | 0.47742 \(^{\{6\}}\) | 0.20095 \(^{\{1\}}\) | 0.45008 \(^{\{5\}}\) | 0.25801 \(^{\{2\}}\) | 1.02512 \(^{\{8\}}\) | 0.33502 \(^{\{3\}}\) | 0.53256 \(^{\{7\}}\) | ||
\(\hat{b}\) | 0.28322 \(^{\{4\}}\) | 0.38863 \(^{\{7\}}\) | 0.17051 \(^{\{1\}}\) | 0.38067 \(^{\{6\}}\) | 0.20565 \(^{\{2\}}\) | 1.15109 \(^{\{8\}}\) | 0.27452 \(^{\{3\}}\) | 0.35095 \(^{\{5\}}\) | ||
\(\sum {Ranks}\) | 69 \(^{\{4\}}\) | 86 \(^{\{7\}}\) | 21 \(^{\{1\}}\) | 83 \(^{\{6\}}\) | 24 \(^{\{2\}}\) | 120 \(^{\{8\}}\) | 57 \(^{\{3\}}\) | 80 \(^{\{5\}}\) |