Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
The expanding H5N1 avian influenza panzootic causes high mortality of skuas in Antarctica
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 January 2026

The expanding H5N1 avian influenza panzootic causes high mortality of skuas in Antarctica

  • Matteo Iervolino1 na1,
  • Anne Günther2 na1,
  • Lineke Begeman1,
  • Begoña Aguado3,
  • Theo M. Bestebroer1,
  • Beatriz Bellido-Martin1,
  • Adam Coerper4,
  • M. Valentina Fornillo5,
  • Bruno Fusaro6,
  • Andrés E. Ibañez7,
  • Lonneke Leijten1,
  • Simeon Lisovski8,
  • Mariané B. Mañez5,
  • Alice Reade4,
  • Peter van Run1,
  • Florencia Soto9,
  • Ben Wallis4,
  • Meagan Dewar10,
  • Antonio Alcamí3,
  • Martin Beer2,
  • Ralph E. T. Vanstreels11 na2 &
  • …
  • Thijs Kuiken1 na2 

Scientific Reports , Article number:  (2026) Cite this article

  • 1384 Accesses

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Conservation biology
  • Infectious-disease diagnostics
  • Influenza virus
  • Pathogens
  • Virology

Abstract

High pathogenicity avian influenza virus H5N1 subtype (H5N1 HPAIV), clade 2.3.4.4b, is expanding its host and geographical range, and invaded Antarctica in 2023. Although mortality in Antarctic wildlife from H5N1 HPAIV has been suspected, mainly based on virological analysis of swabs collected from dead animals, it has not been unequivocally diagnosed. Here we show that H5N1 HPAIV caused high mortality in a breeding colony of skuas at one of ten sites in Antarctica we visited in March 2024. By combined virological, bacteriological and pathological analyses, we found that H5N1 HPAIV caused multi-organ necrosis and rapid death in skuas, but not in other species examined. Taken together with recent data, skuas in Antarctica are at risk of continued mortality from H5N1 HPAIV infection, threatening their already small populations. Conversely, because of their wide distribution and ecological relevance, skuas may play a substantial role in the spread of the virus across Antarctica. Transdisciplinary surveillance is needed in coming years to monitor the impact of this poultry-origin disease on Antarctica’s unique wildlife.

Data availability

A reference sequence including the multi-basic cleavage site (MBCS), generated in this study, is available in GenBank under accession number PV570239.

References

  1. Leguia, M. et al. Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru. Nat. Commun. 14, 5489 (2023).

    Google Scholar 

  2. Kuiken, T. et al. Emergence, spread, and impact of high pathogenicity avian influenza H5 in wild birds and mammals of South America and Antarctica, October 2022 to March 2024. Preprint at https://doi.org/10.32942/X2P35R (2025).

  3. Gilbert, M., Xiao, X. & Robinson, T. P. Intensifying poultry production systems and the emergence of avian influenza in China: a ‘One Health/Ecohealth’ epitome. Arch. Public Health 75, 48 (2017).

    Google Scholar 

  4. Kuiken, T. & Cromie, R. Protect wildlife from livestock diseases. Science 378, 5–5 (2022).

    Google Scholar 

  5. Reperant, L. A., Osterhaus, A. D. M. E. & Kuiken, T. Influenza virus infections. In Infectious diseases of wild mammals and birds in Europe Gavier (eds Widén, D. et al.) 37–58 (Wiley, 2012). https://doi.org/10.1002/9781118342442.ch2.

    Google Scholar 

  6. The Global Consortium for H5N8 and Related Influenza Viruses. Role for migratory wild birds in the global spread of avian influenza H5N8. Science 354, 213–217 (2016).

  7. Lane, J. V. et al. High pathogenicity avian influenza (H5N1) in Northern Gannets ( Morus bassanus ): Global spread, clinical signs and demographic consequences. Ibis 166, 633–650 (2024).

    Google Scholar 

  8. Ogrzewalska, M. et al. High Pathogenicity Avian Influenza Virus (HPAIV) H5N1 clade 2.3.4.4b recovered from a kelp gull ( Larus dominicanus ) in the South Shetland Islands, Antarctica. Preprint at https://doi.org/10.1101/2024.12.29.630510 (2024).

  9. Lisovski, S. et al. Unexpected delayed incursion of highly pathogenic avian influenza H5N1 (Clade 2.3.4.4b) into the Antarctic Region. Influenza Resp. Viruses 18, e70010 (2024).

    Google Scholar 

  10. Banyard, A. C. et al. Detection and spread of high pathogenicity avian influenza virus H5N1 in the Antarctic Region. Nat. Commun. 15, 7433 (2024).

    Google Scholar 

  11. De Seixas, M. M. M. et al. H6N8 avian influenza virus in Antarctic seabirds demonstrates connectivity between South America and Antarctica. Transbound. Emerg. Dis. 69, e3436 (2022).

    Google Scholar 

  12. Hurt, A. C. et al. Evidence for the introduction, reassortment, and persistence of diverse influenza a viruses in Antarctica. J. Virol. 90, 9674–9682 (2016).

    Google Scholar 

  13. Bennett-Laso, B. et al. Confirmation of highly pathogenic avian influenza H5N1 in skuas, Antarctica 2024. Front. Vet. Sci. 11, 1423404 (2024).

    Google Scholar 

  14. Olsen, K. M. & Larsson, H. Skuas and Jaegers: A guide to the skuas and jaegers of the world. (Pica Press, Sussex [England], 1997).

    Google Scholar 

  15. Furness, R. W., Boesman, P. F. D. & Garcia, E. Brown Skua (Stercorarius antarcticus). In birds of the world (eds Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S.) (Cornell Lab of Ornithology). https://doi.org/10.2173/bow.brnsku3.01 (2020).

  16. Mills, W. F. et al. Migration strategies of skuas in the southwest Atlantic Ocean revealed by stable isotopes. Mar. Biol. 171, 27 (2024).

    Google Scholar 

  17. Furness, R. W., Boesman, P. F. D. & Garcia, E. South Polar Skua (Stercorarius maccormicki). In birds of the world (eds Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S.) (Cornell Lab of Ornithology). https://doi.org/10.2173/bow.sopsku1.01 (2020).

  18. Kopp, M. et al. South polar skuas from a single breeding population overwinter in different oceans though show similar migration patterns. Mar. Ecol. Prog. Ser. 435, 263–267 (2011).

    Google Scholar 

  19. Graña Grilli, M. & Cherel, Y. Skuas ( Stercorarius spp.) moult body feathers during both the breeding and inter-breeding periods: implications for stable isotope investigations in seabirds. Ibis 159, 266–271 (2017).

    Google Scholar 

  20. Aguado, B. et al. Searching for high pathogenicity avian influenza virus in Antarctica. Nat. Microbiol. 9, 3081–3083 (2024).

    Google Scholar 

  21. Bennison, A. et al. A case study of highly pathogenic avian influenza (HPAI) H5N1 at Bird Island South Georgia: the first documented outbreak in the subantarctic region. Bird Study https://doi.org/10.1080/00063657.2024.2396563 (2024).

    Google Scholar 

  22. De Lisle, G. W., Stanislawek, W. L. & Moors, P. J. Pasteurella multocida Infections in rockhopper penguins (eudyptes chrysocome) from campbell Island, New Zealand. J. Wildl. Dis. 26, 283–285 (1990).

    Google Scholar 

  23. Leotta, G. A., Chinen, I., Vigo, G. B., Pecoraro, M. & Rivas, M. Outbreaks of avian cholera in Hope Bay, Antarctica. J. Wildl. Dis. 42, 259–270 (2006).

    Google Scholar 

  24. Cooper, J. et al. Disease outbreaks among penguins at sub-Antarctic Marion Island: a conservation concern. Marine Ornithol. 37(193), 196 (2009).

    Google Scholar 

  25. Jaeger, A. et al. Avian cholera outbreaks threaten seabird species on Amsterdam Island. PLoS ONE 13, e0197291 (2018).

    Google Scholar 

  26. Barbosa, A. et al. Antarctic wildlife diseases. https://doi.org/10.18124/D4CC7V (2015)

  27. Samuel, M. D., Botzler, R. G. & Wobeser, G. A. Avian Cholera. In Infectious Diseases of Wild Birds (eds Thomas, N. J., Hunter, D. B. & Atkinson C. T.) 239–269 (Wiley, 2007). https://doi.org/10.1002/9780470344668.ch12. 

  28. Shirihai, H. A. Complete guide to antarctic wildlife: the birds and marine mammals of the antarctic continent and the southern ocean (Bloomsbury, 2019).

    Google Scholar 

  29. Aguado, B. et al. Detection of high pathogenicity avian influenza virus in Antarctica during the international HPAI Australis expedition 2024. Digital.CSIC. https://doi.org/10.20350/DIGITALCSIC/16596 (2024).

  30. Arné, P., Risco-Castillo, V., Jouvion, G., Le Barzic, C. & Guillot, J. Aspergillosis in wild birds. JoF 7, 241 (2021).

    Google Scholar 

  31. Infectious Diseases of Wild Birds. (Blackwell Pub, Ames, Iowa, 2007).

  32. Kleyheeg, E. et al. Deaths among wild birds during highly pathogenic avian influenza A(H5N8) virus outbreak, the netherlands. Emerg. Infect. Dis. 23, 2050–2054 (2017).

    Google Scholar 

  33. Günther, A. et al. Avian raptors are indicator species and victims of high pathogenicity avian influenza virus HPAIV H5N1 (clade 2.3.4.4b) in Germany. Sci. Rep. 14, 28779 (2024).

    Google Scholar 

  34. Giacinti, J. A. et al. Avian influenza viruses in wild birds in Canada following incursions of highly pathogenic H5N1 virus from Eurasia in 2021–2022. mBio 15, e03203-23 (2024).

    Google Scholar 

  35. Bollinger, T. K. et al. Ecology and management of avian botulism on the canadian prairies. https://www.phjv.ca/wp-content/uploads/2017/10/BotulismReport_FINAL_FullReport_Aug2011.pdf (2011).

  36. Wobeser, G. A. Investigation and Management of Disease in Wild Animals (Springer, 1994).

    Google Scholar 

  37. Banyard, A. C. et al. Detection of highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b in great skuas: a species of conservation concern in great Britain. Viruses 14, 212 (2022).

    Google Scholar 

  38. Camphuysen, C., Gear, S. & Furness, R. Avian influenza leads to mass mortality of adult great skuas in foula in summer. Scott. Birds 2022(42), 312–323 (2022).

    Google Scholar 

  39. Yamamoto, Y., Nakamura, K. & Mase, M. Survival of highly pathogenic avian influenza h5n1 virus in tissues derived from experimentally infected chickens. Appl. Environ. Microbiol. 83, e00604 (2017).

    Google Scholar 

  40. Ramey, A. M. et al. Evidence for interannual persistence of infectious influenza a viruses in Alaska wetlands. Sci. Total Environ. 803, 150078 (2022).

    Google Scholar 

  41. Perlas, A. et al. Persistence of low pathogenic avian influenza virus in artificial streams mimicking natural conditions of waterfowl habitats in the Mediterranean climate. Sci. Total Environ. 863, 160902 (2023).

    Google Scholar 

  42. Keawcharoen, J. et al. Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerg. Infect. Dis. 14, 600–607 (2008).

    Google Scholar 

  43. Ahrens, A. K. et al. Investigating environmental matrices for use in avian influenza virus surveillance—surface water, sediments, and avian fecal samples. Microbiol. Spectr. 11, e02664-22 (2023).

    Google Scholar 

  44. Pannwitz, G., Wolf, C. & Harder, T. Active surveillance for avian influenza virus infection in wild birds by analysis of avian fecal samples from the environment. J. Wildl. Dis. 45, 512–518 (2009).

    Google Scholar 

  45. Bárbara, A. et al. Avian influenza virus surveillance in South-Central Spain using fecal samples of aquatic birds foraging at landfills. Front. Vet. Sci. 4, 178 (2017).

    Google Scholar 

  46. Eriksson, P., Mourkas, E., González-Acuna, D., Olsen, B. & Ellström, P. Evaluation and optimization of microbial DNA extraction from fecal samples of wild Antarctic bird species. Infect. Ecol. Epidemiol. 7, 1386536 (2017).

    Google Scholar 

  47. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Google Scholar 

  48. Stallknecht, D. E. et al. Detection of avian influenza viruses from shorebirds: evaluation of surveillance and testing approaches. J. Wildl. Dis. 48, 382–393 (2012).

    Google Scholar 

  49. Pantin-Jackwood, M. J. & Swayne, D. E. Pathogenesis and pathobiology of avian influenza virus infection in birds. Rev. Sci. Tech. 28, 113–136 (2009).

    Google Scholar 

  50. Trivelpiece, W. & Volkman, N. J. Feeding strategies of sympatric South Polar Catharacta maccormicki and Brown Skua C. lonnbergi. Ibis 124, 50–54 (1982).

    Google Scholar 

  51. Graña Grilli, M., Di Virgilio, A., Alarcón, P. & Cherel, Y. Apparent mismatch between stable isotopes and foraging habitat suggests high secondary ingestion of Antarctic krill in brown skuas. Mar. Ecol. Prog. Ser. 708(163), 176 (2023).

    Google Scholar 

  52. Furness, R. W. 1987 The Skuas (T & AD Poyser, 1987).

    Google Scholar 

  53. Bröjer, C. et al. Characterization of encephalitis in wild birds naturally infected by highly pathogenic avian influenza H5N1. Avian Dis. 56, 144–152 (2012).

    Google Scholar 

  54. León, F. et al. Skuas mortalities linked to positives HPAIV A/H5 beyond polar antarctic circle. Preprint at https://doi.org/10.1101/2025.03.02.640960 (2025).

  55. Tremlett, C. J., Cleasby, I. R., Bolton, M. & Wilson, L. J. 2025 Declines in UK breeding populations of seabird species of conservation concern following the outbreak of high pathogenicity avian influenza (HPAI) in 2021–2022. Bird Study https://doi.org/10.1080/00063657.2024.2438641 (2024).

    Google Scholar 

  56. Phillips, R. et al. Movements, winter distribution and activity patterns of Falkland and brown skuas: insights from loggers and isotopes. Mar. Ecol. Prog. Ser. 345, 281–291 (2007).

    Google Scholar 

  57. Weimerskirch, H. et al. Population-specific wintering distributions of adult south polar skuas over three oceans. Mar. Ecol. Prog. Ser. 538, 229–237 (2015).

    Google Scholar 

  58. Lamb, J. et al. Hanging out at the club: Breeding status and territoriality affect individual space use, multi-species overlap and pathogen transmission risk at a seabird colony. Funct. Ecol. 37, 576–590 (2023).

    Google Scholar 

  59. Verhagen, J. H., Fouchier, R. A. M. & Lewis, N. Highly pathogenic avian influenza viruses at the wild-domestic bird interface in europe: future directions for research and surveillance. Viruses 13, 212 (2021).

    Google Scholar 

  60. Bellido-Martín, B. et al. Evolution, spread and impact of highly pathogenic H5 avian influenza a viruses. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-025-01189-4 (2025).

    Google Scholar 

  61. Lee, J. R. et al. Threat management priorities for conserving Antarctic biodiversity. PLoS Biol. 20, e3001921 (2022).

    Google Scholar 

  62. Hernaez, B. et al. Monitoring monkeypox virus in saliva and air samples in Spain: a cross-sectional study. Lancet Microbe 4, e21–e28 (2023).

    Google Scholar 

  63. Hoek, R. A. S. et al. Incidence of viral respiratory pathogens causing exacerbations in adult cystic fibrosis patients. Scand. J. Infect. Dis. 45, 65–69 (2013).

    Google Scholar 

  64. Chestakova, I. V. et al. High number of HPAI H5 virus infections and antibodies in wild carnivores in the Netherlands, 2020–2022. Emerg. Microbes Infect. 12, 2270068 (2023).

    Google Scholar 

  65. Hoffmann, B., Hoffmann, D., Henritzi, D., Beer, M. & Harder, T. C. Riems influenza a typing array (RITA): An RT-qPCR-based low density array for subtyping avian and mammalian influenza a viruses. Sci. Rep. 6, 27211 (2016).

    Google Scholar 

  66. James, J. et al. Rapid and sensitive detection of high pathogenicity Eurasian clade 2.3.4.4b avian influenza viruses in wild birds and poultry. J. Virol. Methods 301, 114454 (2022).

    Google Scholar 

  67. Slomka, M. J. et al. Identification of sensitive and specific avian influenza polymerase chain reaction methods through blind ring trials organized in the European Union. Avian Dis. 51, 227–234 (2007).

    Google Scholar 

  68. Nefedchenko, A. V. et al. Detection and genotyping Pasteurella multocida of five capsular groups in real time polymerase chain reaction. S-h. Biol. 52, 401–408 (2017).

    Google Scholar 

  69. Tryland, M., Handeland, K., Bratberg, A.-M., Solbakk, I.-T. & Oksanen, A. Persistence of antibodies in blood and body fluids in decaying fox carcasses, as exemplified by antibodies against microsporum canis. Acta Vet. Scand. 48, 10 (2006).

    Google Scholar 

  70. Bauer, L. et al. The pro-inflammatory response to influenza A virus infection is fueled by endothelial cells. Life Sci. Alliance 6, e202201837 (2023).

    Google Scholar 

  71. De Bruin, A. C. M. et al. Species-specific emergence of H7 highly pathogenic avian influenza virus is driven by intrahost selection differences between chickens and ducks. PLoS Pathog. 20, e1011942 (2024).

    Google Scholar 

  72. Santos, P. D. et al. An advanced sequence clustering and designation workflow reveals the enzootic maintenance of a dominant West Nile virus subclade in Germany. Virus Evol. 9, vead013 (2023).

    Google Scholar 

  73. Hassan, K. E. et al. Improved subtyping of avian influenza viruses using an RT-qPCR-based low density array: ‘riems influenza a typing array’, version 2 (RITA-2). Viruses 14, 415 (2022).

    Google Scholar 

Download references

Acknowledgments

We thank Ron Fouchier for support in setting up the molecular analyses, Timm Harder and Sanne Thewessen for optimizing the HPAI RT-qPCR protocol, Anne van der Linden for support with the serological analyses, Dirk Höper, Patrick Zitzow, Lukas Wessler and Kristin Trippler for support with the analyses of environmental fecal samples, Jurriaan de Steenwinkel for providing a P. multocida positive control, Micaela Carrillo, Diego Torres and Nadia Haidr for field monitoring of the breeding population of skuas at Esperanza/Hope Bay.

Funding

The HPAI Australis Expedition was funded by the International Association of Antarctica Tour Operators (IAATO) and Ocean Expeditions. MI, AG, LB, TMB, BBM, LL, PvR, MB, TK were funded by the European Union under grant agreement 101084171 (Kappa-Flu). Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or REA. Neither the European Union nor the granting authority can be held responsible for them. The participation of BA and AA to the expedition was funded by Consejo Superior de Investigaciones Científicas (CSIC) under grant agreement 202320E224 and CSIC PTI Salud Global (Next Generation EU).

Author information

Author notes
  1. Matteo Iervolino, Anne Günther contributed equally to this work as first authors.

  2. Ralph E. T. Vanstreels, Thijs Kuiken contributed equally to this work as last authors.

Authors and Affiliations

  1. Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands

    Matteo Iervolino, Lineke Begeman, Theo M. Bestebroer, Beatriz Bellido-Martin, Lonneke Leijten, Peter van Run & Thijs Kuiken

  2. Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany

    Anne Günther & Martin Beer

  3. Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), Madrid, Spain

    Begoña Aguado & Antonio Alcamí

  4. Ocean Expeditions Support Vessel S/V Australis, Sydney, New South Wales, Australia

    Adam Coerper, Alice Reade & Ben Wallis

  5. Centro de Estudios Parasitológicos y de Vectores (CEPAVE), CONICET – Universidad Nacional de La Plata, La Plata, Argentina

    M. Valentina Fornillo & Mariané B. Mañez

  6. Departamento de Ecofisiología y Ecotoxicología, Instituto Antártico Argentino; San Martín, Buenos Aires, Argentina

    Bruno Fusaro

  7. Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Argentina

    Andrés E. Ibañez

  8. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany

    Simeon Lisovski

  9. Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Puerto Madryn, Argentina

    Florencia Soto

  10. Future Regions Research Centre, Federation University Australia, Berwick, Victoria, Australia

    Meagan Dewar

  11. School of Veterinary Medicine, Karen C. Drayer Wildlife Health Center, One Health Institute, University of California, Davis, Davis, CA, USA

    Ralph E. T. Vanstreels

Authors
  1. Matteo Iervolino
    View author publications

    Search author on:PubMed Google Scholar

  2. Anne Günther
    View author publications

    Search author on:PubMed Google Scholar

  3. Lineke Begeman
    View author publications

    Search author on:PubMed Google Scholar

  4. Begoña Aguado
    View author publications

    Search author on:PubMed Google Scholar

  5. Theo M. Bestebroer
    View author publications

    Search author on:PubMed Google Scholar

  6. Beatriz Bellido-Martin
    View author publications

    Search author on:PubMed Google Scholar

  7. Adam Coerper
    View author publications

    Search author on:PubMed Google Scholar

  8. M. Valentina Fornillo
    View author publications

    Search author on:PubMed Google Scholar

  9. Bruno Fusaro
    View author publications

    Search author on:PubMed Google Scholar

  10. Andrés E. Ibañez
    View author publications

    Search author on:PubMed Google Scholar

  11. Lonneke Leijten
    View author publications

    Search author on:PubMed Google Scholar

  12. Simeon Lisovski
    View author publications

    Search author on:PubMed Google Scholar

  13. Mariané B. Mañez
    View author publications

    Search author on:PubMed Google Scholar

  14. Alice Reade
    View author publications

    Search author on:PubMed Google Scholar

  15. Peter van Run
    View author publications

    Search author on:PubMed Google Scholar

  16. Florencia Soto
    View author publications

    Search author on:PubMed Google Scholar

  17. Ben Wallis
    View author publications

    Search author on:PubMed Google Scholar

  18. Meagan Dewar
    View author publications

    Search author on:PubMed Google Scholar

  19. Antonio Alcamí
    View author publications

    Search author on:PubMed Google Scholar

  20. Martin Beer
    View author publications

    Search author on:PubMed Google Scholar

  21. Ralph E. T. Vanstreels
    View author publications

    Search author on:PubMed Google Scholar

  22. Thijs Kuiken
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: MI, AG, LB, BA, FS, MD, AA, MB, RETV, TK Methodology: MI, AG, LB, TMB, BBM, LL, PVR Investigation: MI, AG, LB, BA, MVF, BF, AEI, MBM, SL, FS, MD, AA, RETV, TK Visualization: MI, AG, LB, RETV, TK Writing – original draft: MI, AG, LB, RETV, TK Writing – review & editing: all authors.

Corresponding author

Correspondence to Thijs Kuiken.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iervolino, M., Günther, A., Begeman, L. et al. The expanding H5N1 avian influenza panzootic causes high mortality of skuas in Antarctica. Sci Rep (2026). https://doi.org/10.1038/s41598-025-34736-3

Download citation

  • Received: 03 June 2025

  • Accepted: 30 December 2025

  • Published: 14 January 2026

  • DOI: https://doi.org/10.1038/s41598-025-34736-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology