Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
A multiscale transformer with spatial attention for hyperspectral image classification
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 January 2026

A multiscale transformer with spatial attention for hyperspectral image classification

  • Irfan Ahmad1,
  • Ghulam Farooque2,
  • Fazal Hadi3,
  • Abdolraheem Khader1,
  • Sara Abdelwahab Ghorashi4,
  • Ali Ahmed5 &
  • …
  • Eatedal Alabdulkreem4 

Scientific Reports , Article number:  (2026) Cite this article

  • 912 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Computer science
  • Information technology

Abstract

Hyperspectral images (HSIs) are renowned for their rich spatial and spectral information, which is crucial for accurate classification. The acquisition of discriminative spectral-spatial features plays a pivotal role in determining classification results. While convolutional neural networks (CNNs) have demonstrated remarkable performance in HSI classification, increasing network depth can lead to performance degradation. Furthermore, their fixed scale and limited receptive field restrict the ability to capture long-range dependencies, hindering effective feature learning and, consequently, affecting the generalization capability of the framework. This paper presents a novel HSIs classification framework, MTSA-Net, which integrates a multiscale transformer with a spatial attention mechanism, resulting in a more robust, flexible, and high-performing approach. Initially, the proposed framework utilizes 3-D and 2-D convolution layers, followed by spatial attention to prioritize and focus on the most critical spatial features. These enhanced features are then passed through multiscale transformer encoders to capture local and global representations, effectively modeling long-range dependencies. Finally, a feature fusion module combines features extracted at varying scales, leading to a more robust and comprehensive feature representation for final classification. Extensive experiments on five widely used benchmark HSIs datasets demonstrate that the proposed MTSA-Net method outperforms state-of-the-art approaches, particularly with limited training samples. The overall accuracies of 98.84%, 98.77%, 99.80%, 97.84%, and 95.87% are achieved on the Indian Pines, Pavia University, Salinas Valley, Houston-13, and Houston-18 datasets, respectively. The source code for this work will be accessible at https://github.com/irfan01000 for reproducibility.

Similar content being viewed by others

GroupFormer for hyperspectral image classification through group attention

Article Open access 12 October 2024

Progressive multi-scale multi-attention fusion for hyperspectral image classification

Article Open access 11 August 2025

Double-branch feature fusion transformer for hyperspectral image classification

Article Open access 06 January 2023

Data availability

The datasets analyzed during this research are available at: https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Sceneshttps://machinelearning.ee.uh.edu/2013-ieee-grss-data-fusion-contest/https://machinelearning.ee.uh.edu/2018-ieee-grss-data-fusion-challenge-fusion-of-multispectral-lidar-and-hyperspectral-data/

References

  1. Li, S. et al. Deep learning for hyperspectral image classification: An overview. IEEE Transactions on Geoscience and Remote Sensing 57(9), 6690–6709. https://doi.org/10.1109/TGRS.2019.2907932 (2019).

    Google Scholar 

  2. Vaddi, R. & Manoharan, P. Hyperspectral image classification using cnn with spectral and spatial features integration. Infrared Physics & Technology 107, 103296 (2020).

    Google Scholar 

  3. Farooque, G., Xiao, L., Yang, J. & Sargano, A. B. Hyperspectral image classification via a novel spectral-spatial 3d convlstm-cnn. Remote Sensing 13(21), 4348 (2021).

    Google Scholar 

  4. Roy, S. K., Krishna, G., Dubey, S. R. & Chaudhuri, B. B. Hybridsn: Exploring 3-d-2-d cnn feature hierarchy for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters 17(2), 277–281 (2019).

    Google Scholar 

  5. Wang, C., Zhang, P., Zhang, Y., Zhang, L. & Wei, W.: A multi-label hyperspectral image classification method with deep learning features. In Proceedings of the International Conference on Internet Multimedia Computing and Service, 127–131 (2016).

  6. He, L., Li, J., Liu, C. & Li, S. Recent advances on spectral-spatial hyperspectral image classification: An overview and new guidelines. IEEE Transactions on Geoscience and Remote Sensing 56(3), 1579–1597 (2017).

    Google Scholar 

  7. Hong, D. et al. Spectralformer: Rethinking hyperspectral image classification with transformers. IEEE Transactions on Geoscience and Remote Sensing 60, 1–15 (2021).

    Google Scholar 

  8. Zhou, P., Han, J., Cheng, G. & Zhang, B. Learning compact and discriminative stacked autoencoder for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 57(7), 4823–4833 (2019).

    Google Scholar 

  9. Zheng, X., Yuan, Y. & Lu, X. Dimensionality reduction by spatial-spectral preservation in selected bands. IEEE Transactions on Geoscience and Remote Sensing 55(9), 5185–5197 (2017).

    Google Scholar 

  10. Liang, J., Li, P., Zhao, H., Han, L. & Qu, M.: Forest species classification of uav hyperspectral image using deep learning. In 2020 Chinese Automation Congress (CAC), 7126–7130 (2020). https://doi.org/10.1109/CAC51589.2020.9327690

  11. Zhang, C. et al. Noise reduction in the spectral domain of hyperspectral images using denoising autoencoder methods. Chemometrics and Intelligent Laboratory Systems 203, 104063 (2020).

    Google Scholar 

  12. Hadi, F. et al. Dhcae: Deep hybrid convolutional autoencoder approach for robust supervised hyperspectral unmixing. Remote Sensing 14(18), 4433 (2022).

    Google Scholar 

  13. Hadi, F., Yang, J., Farooque, G. & Xiao, L. Deep convolutional transformer network for hyperspectral unmixing. European Journal of Remote Sensing 56(1), 2268820 (2023).

    Google Scholar 

  14. Khader, A., Xiao, L. & Yang, J. A model-guided deep convolutional sparse coding network for hyperspectral and multispectral image fusion. International Journal of Remote Sensing 43(6), 2268–2295 (2022).

    Google Scholar 

  15. Zhang, G. et al. Htd-net: A deep convolutional neural network for target detection in hyperspectral imagery. Remote Sensing 12(9), 1489 (2020).

    Google Scholar 

  16. Farooque, G., Xiao, L., Sargano, A. B., Abid, F. & Hadi, F. A dual attention driven multiscale-multilevel feature fusion approach for hyperspectral image classification. International Journal of Remote Sensing 44(4), 1151–1178 (2023).

    Google Scholar 

  17. Shenming, Q., Xiang, L. & Zhihua, G. A new hyperspectral image classification method based on spatial-spectral features. Scientific Reports 12(1), 1541 (2022).

    Google Scholar 

  18. Miranda-Vega, J. E., Rivas-López, M. & Fuentes, W. F. k-nearest neighbor classification for pattern recognition of a reference source light for machine vision system. IEEE Sensors Journal 21(10), 11514–11521. https://doi.org/10.1109/JSEN.2020.3024094 (2021).

    Google Scholar 

  19. Shi, X. & Sun, L.: Hyperspectral image classification with support vector machines based on the maximum noise fraction. In 2022 IEEE 5th International Conference on Electronics Technology (ICET), 1193–1197 (2022). https://doi.org/10.1109/ICET55676.2022.9824122

  20. Bajpai, S., Singh, H.V. & Kidwai, N.R.: Feature extraction & classification of hyperspectral images using singular spectrum analysis & multinomial logistic regression classifiers. In 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), 97–100 (IEEE, 2017). 

  21. Duan, W., Li, S. & Fang, L.: Spectral-spatial hyperspectral image classification using superpixel and extreme learning machines. In Pattern Recognition: 6th Chinese Conference, CCPR 2014, Changsha, China, November 17-19, 2014. Proceedings, Part I 6, 159–167 (Springer, 2014). 

  22. Zhang, Y., Cao, G., Li, X. & Wang, B. Cascaded random forest for hyperspectral image classification. IEEE journal of selected topics in applied earth observations and remote sensing 11(4), 1082–1094 (2018).

    Google Scholar 

  23. Islam, M.R., Ahmed, B. & Hossain, M.A.: Feature reduction based on segmented principal component analysis for hyperspectral images classification. In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), 1–6 (2019). https://doi.org/10.1109/ECACE.2019.8679394

  24. Champa, A.I., Rabbi, M.F., Mahedy Hasan, S.M., Zaman, A. & Kabir, M.H.: Tree-based classifier for hyperspectral image classification via hybrid technique of feature reduction. In 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD),  115–119 (2021). https://doi.org/10.1109/ICICT4SD50815.2021.9396809

  25. Li, E., Du, P., Samat, A., Meng, Y. & Che, M. Mid-level feature representation via sparse autoencoder for remotely sensed scene classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10(3), 1068–1081 (2016).

    Google Scholar 

  26. Chen, Y., Lin, Z., Zhao, X., Wang, G. & Gu, Y. Deep learning-based classification of hyperspectral data. IEEE Journal of Selected topics in applied earth observations and remote sensing 7(6), 2094–2107 (2014).

    Google Scholar 

  27. Otter, D. W., Medina, J. R. & Kalita, J. K. A survey of the usages of deep learning for natural language processing. IEEE Transactions on Neural Networks and Learning Systems 32(2), 604–624. https://doi.org/10.1109/TNNLS.2020.2979670 (2021).

    Google Scholar 

  28. Chai, J., Zeng, H., Li, A. & Ngai, E. W. Deep learning in computer vision: A critical review of emerging techniques and application scenarios. Machine Learning with Applications 6, 100134 (2021).

    Google Scholar 

  29. Zhang, Q., Yang, L. T., Chen, Z. & Li, P. A survey on deep learning for big data. Information Fusion 42, 146–157 (2018).

    Google Scholar 

  30. Zhao, W. & Du, S. Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Transactions on Geoscience and Remote Sensing 54(8), 4544–4554 (2016).

    Google Scholar 

  31. Li, W., Wu, G., Zhang, F. & Du, Q. Hyperspectral image classification using deep pixel-pair features. IEEE Transactions on Geoscience and Remote Sensing 55(2), 844–853 (2016).

    Google Scholar 

  32. Liu, Q., Xiao, L., Yang, J. & Wei, Z. Cnn-enhanced graph convolutional network with pixel-and superpixel-level feature fusion for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 59(10), 8657–8671 (2020).

    Google Scholar 

  33. Zhang, H., Li, Y., Zhang, Y. & Shen, Q. Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network. Remote sensing letters 8(5), 438–447 (2017).

    Google Scholar 

  34. Lee, H. & Kwon, H. Going deeper with contextual cnn for hyperspectral image classification. IEEE Transactions on Image Processing 26(10), 4843–4855 (2017).

    Google Scholar 

  35. Feng, F., Wang, S., Wang, C. & Zhang, J. Learning deep hierarchical spatial-spectral features for hyperspectral image classification based on residual 3d–2d cnn. Sensors 19(23), 5276 (2019).

    Google Scholar 

  36. Jia, S., Zhao, B., Tang, L., Feng, F. & Wang, W. Spectral-spatial classification of hyperspectral remote sensing image based on capsule network. The Journal of Engineering 2019(21), 7352–7355 (2019).

    Google Scholar 

  37. Chen, C., Zhang, J.-J., Zheng, C.-H., Yan, Q. & Xun, L.-N.: Classification of hyperspectral data using a multi-channel convolutional neural network. In Intelligent Computing Methodologies: 14th International Conference, ICIC 2018, Wuhan, China, August 15-18, 2018, Proceedings, Part III 14, 81–92 (Springer, 2018). 

  38. Hao, S., Wang, W., Ye, Y., Nie, T. & Bruzzone, L. Two-stream deep architecture for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 56(4), 2349–2361 (2017).

    Google Scholar 

  39. Gong, H., Farooque, G., Khader & A., Xiao, L.: Multiscale semantic alignment graph convolution network for single-shot learning based hyperspectral image classification. In Fourteenth International Conference on Graphics and Image Processing (ICGIP 2022), 12705, 462–473 (SPIE, 2023). 

  40. Chen, Y., Jiang, H., Li, C., Jia, X. & Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE transactions on geoscience and remote sensing 54(10), 6232–6251 (2016).

    Google Scholar 

  41. Li, Y., Zhang, H. & Shen, Q. Spectral-spatial classification of hyperspectral imagery with 3d convolutional neural network. Remote Sensing 9(1), 67 (2017).

    Google Scholar 

  42. Zhao, F. et al. Multiple vision architectures-based hybrid network for hyperspectral image classification. Expert Systems with Applications 234, 121032 (2023).

    Google Scholar 

  43. Carion, N., et al.: End-to-end object detection with transformers. In European Conference on Computer Vision, 213–229 (Springer, 2020). 

  44. Touvron, H., et al.: Training data-efficient image transformers & distillation through attention. In International Conference on Machine Learning, 10347–10357 (PMLR, 2021). 

  45. Parvaiz, A. et al. Vision transformers in medical computer vision-a contemplative retrospection. Engineering Applications of Artificial Intelligence 122, 106126 (2023).

    Google Scholar 

  46. Hong, D., et al.: Spectralformer: Rethinking hyperspectral image classification with transformers. IEEE Transactions on Geoscience and Remote Sensing 60, 1–15 (2022) https://doi.org/10.1109/TGRS.2021.3130716

  47. Ullah, W., Hussain, T., Ullah, F. U. M., Lee, M. Y. & Baik, S. W. Transcnn: Hybrid cnn and transformer mechanism for surveillance anomaly detection. Engineering Applications of Artificial Intelligence 123, 106173 (2023).

    Google Scholar 

  48. Sun, L., Zhao, G., Zheng, Y. & Wu, Z. Spectral-spatial feature tokenization transformer for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 60, 1–14 (2022).

    Google Scholar 

  49. Roy, S.K., et al.: Spectral–spatial morphological attention transformer for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 61, 1–15 (2023) https://doi.org/10.1109/TGRS.2023.3242346

  50. Yu, H.,et al.: A multilevel spectral–spatial transformer network for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 60, 1–13 (2022) https://doi.org/10.1109/TGRS.2022.3186400

  51. He, W., Huang, W., Liao, S., Xu, Z. & Yan, J.: Csit: A multiscale vision transformer for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15, 9266–9277 (2022) https://doi.org/10.1109/JSTARS.2022.3216335

  52. Zhang, B., Chen, Y., Rong, Y., Xiong, S. & Lu, X. Matnet: A combining multi-attention and transformer network for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 61, 1–15 (2023).

    Google Scholar 

  53. Luo, F., Huang, H., Duan, Y., Liu, J. & Liao, Y. Local geometric structure feature for dimensionality reduction of hyperspectral imagery. Remote Sensing 9(8), 790 (2017).

    Google Scholar 

  54. Hu, W., Huang, Y., Wei, L., Zhang, F. & Li, H. Deep convolutional neural networks for hyperspectral image classification. Journal of Sensors 2015, 1–12 (2015).

    Google Scholar 

  55. Ahmad, M. et al. A fast and compact 3-d cnn for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2020).

    Google Scholar 

  56. Pande, S. & Banerjee, B. Hyperloopnet: Hyperspectral image classification using multiscale self-looping convolutional networks. ISPRS Journal of Photogrammetry and Remote Sensing 183, 422–438 (2022).

    Google Scholar 

  57. Xu, Q., Xiao, Y., Wang, D. & Luo, B. Csa-mso3dcnn: Multiscale octave 3d cnn with channel and spatial attention for hyperspectral image classification. Remote Sensing 12(1), 188 (2020).

    Google Scholar 

  58. Liu, Q., Xiao, L., Huang, N. & Tang, J.: Composite neighbor-aware convolutional metric networks for hyperspectral image classification. IEEE Transactions on Neural Networks and Learning Systems (2022).

  59. Vaswani, A., et al.: Attention is all you need. Advances in neural information processing systems 30 (2017).

  60. Haut, J. M., Paoletti, M. E., Plaza, J., Plaza, A. & Li, J. Visual attention-driven hyperspectral image classification. IEEE transactions on geoscience and remote sensing 57(10), 8065–8080 (2019).

    Google Scholar 

  61. Chen, Y., Kalantidis, Y., Li, J., Yan, S. & Feng, J.: A2-nets: Double attention networks. Advances in neural information processing systems 31 (2018).

  62. Woo, S., Park, J., Lee, J.-Y. & Kweon, I.S.: Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), 3–19 (2018).

  63. Wang, Q., et al.: Eca-net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 11534–11542 (2020).

  64. Mou, L. & Zhu, X. X. Learning to pay attention on spectral domain: A spectral attention module-based convolutional network for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 58(1), 110–122 (2019).

    Google Scholar 

  65. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

  66. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 10012–10022 (2021).

  67. Xu, Y., Du, B. & Zhang, L. Beyond the patchwise classification: Spectral-spatial fully convolutional networks for hyperspectral image classification. IEEE Transactions on Big Data 6(3), 492–506. https://doi.org/10.1109/TBDATA.2019.2923243 (2020).

    Google Scholar 

  68. Yin, J., Qi, C., Huang, W., Chen, Q. & Qu, J.: Multibranch 3d-dense attention network for hyperspectral image classification. IEEE Access 10, 71886–71898 (2022) https://doi.org/10.1109/ACCESS.2022.3188853

  69. Makantasis, K., Karantzalos, K., Doulamis, A. & Doulamis, N.: Deep supervised learning for hyperspectral data classification through convolutional neural networks. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 4959–4962 (IEEE, 2015). 

  70. Kanthi, M., Sarma, T.H. & Bindu, C.S.: A 3d-deep cnn based feature extraction and hyperspectral image classification. In 2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS), 229–232 (IEEE, 2020).

  71. Shu, Z., Wang, Y. & Yu, Z. Dual attention transformer network for hyperspectral image classification. Engineering Applications of Artificial Intelligence 127, 107351 (2024).

    Google Scholar 

  72. Jiang, N., Geng, S., Zheng, Y., Sun & L.: Msdca: A multi-scale dual-branch network with enhanced cross-attention for hyperspectral image classification. Remote Sensing 17(13) (2025) https://doi.org/10.3390/rs17132198

  73. Farooque, G., Liu, Q., Sargano, A. B. & Xiao, L. Swin transformer with multiscale 3d atrous convolution for hyperspectral image classification. Engineering Applications of Artificial Intelligence 126, 107070 (2023).

    Google Scholar 

Download references

Acknowledgements

This paper was funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project, under grant No. (PNURSP2026R161), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors, therefore, gratefully acknowledge and thank Nourah bint Abdulrahman University for its technical and financial support.

Author information

Authors and Affiliations

  1. School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China

    Irfan Ahmad & Abdolraheem Khader

  2. Department of Computer Science & IT, University of Lahore, Lahore, Punjab, Pakistan

    Ghulam Farooque

  3. Taizhou Key Laboratory of Minimally Invasive Interventional Therapy Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital, Taizhou, 210094, Zhejiang, China

    Fazal Hadi

  4. Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

    Sara Abdelwahab Ghorashi & Eatedal Alabdulkreem

  5. Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

    Ali Ahmed

Authors
  1. Irfan Ahmad
    View author publications

    Search author on:PubMed Google Scholar

  2. Ghulam Farooque
    View author publications

    Search author on:PubMed Google Scholar

  3. Fazal Hadi
    View author publications

    Search author on:PubMed Google Scholar

  4. Abdolraheem Khader
    View author publications

    Search author on:PubMed Google Scholar

  5. Sara Abdelwahab Ghorashi
    View author publications

    Search author on:PubMed Google Scholar

  6. Ali Ahmed
    View author publications

    Search author on:PubMed Google Scholar

  7. Eatedal Alabdulkreem
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, I.A. & G.F.; methodology, I.A. & F.H.; implementation, I.A. & F.H.; validation, I.A.; formal analysis, G.F. & A.K.; investigation, I.A. & A.K.; writing, I.A. & G.F.; result interpretation, I.A. & A.A.; review and editing, A.K., S.A.G., & A.A.; supervision and proofreading, S.A.G. & E.A.; and funding acquisition, S.A.G. & E.A. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Abdolraheem Khader.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Farooque, G., Hadi, F. et al. A multiscale transformer with spatial attention for hyperspectral image classification. Sci Rep (2026). https://doi.org/10.1038/s41598-025-34756-z

Download citation

  • Received: 04 June 2025

  • Accepted: 31 December 2025

  • Published: 13 January 2026

  • DOI: https://doi.org/10.1038/s41598-025-34756-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Hyperspectral image classification
  • Convolutional neural networks (CNNs)
  • Spatial attention
  • Multiscale transformers
  • Spectral-spatial features
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics