Table 6 Performance metrics results of deep learning models.
Models | MSE | RMSE | MAE | MBE | r | R2 | RRMSE | NSE | WI | Fitted time |
|---|---|---|---|---|---|---|---|---|---|---|
DPRNNs | 0.0385 | 0.0910 | 0.1126 | 0.0057 | 0.9406 | 0.9439 | 10.0154 | 0.8897 | 0.8713 | 2.01133 |
RNN | 0.0708 | 0.2751 | 0.2251 | -0.0368 | 0.9386 | 0.9420 | 20.8977 | 0.8318 | 0.8482 | 2.033982 |
GRUs | 0.0726 | 0.2782 | 0.2372 | -0.0499 | 0.9104 | 0.9137 | 21.5488 | 0.8156 | 0.8455 | 2.18951 |
LSTM | 0.0747 | 0.2818 | 0.2324 | 0.0167 | 0.9080 | 0.9113 | 22.3236 | 0.8085 | 0.8347 | 3.322431 |
MLPRegressor | 0.0771 | 0.2859 | 0.2387 | -0.0264 | 0.9017 | 0.9050 | 23.2032 | 0.8002 | 0.8245 | 7.758872 |