Table 2 Aggregation measures.
Aggregation measure | Computation formula |
|---|---|
Variance(ag1) | \(var(p)=\frac{\sigma _p}{\mu _p}\) |
Arithmetic Mean(ag2) | \(\mu _p=\frac{1}{R}\sum _{q=1}^{R}p_q\) |
Skewness(ag3) | \(\gamma _1=\displaystyle {\frac{\sum _{q=1}^{R}( p-\overline{p})^3/R}{(\sigma (p))^3}}\) |
Minimum | – |
Median(ag4) | \(M_{p} ={\left\{ \begin{array}{ll}p_{R+1/2} & if R is odd\\ 1/2(p_{R/2}+p_{R+2/2}) & otherwise\end{array}\right. }\) |
Quartile1(25\(\%\))(ag5) | – |
Theli Index (ag6) | \(I_{Theli}(p)={\frac{1}{R}}\sum _{q=1}^{R}(\frac{p_q}{\mu _s}*\ln (\frac{p_q}{\mu _s}))\) |
Standard Deviation (ag7) | \(\sigma _p= \sqrt{\frac{1}{R}\sum _{q=1}^{R}(p_q-\mu _q)^2}\) |
Quartile3(75\(\%\)) (ag8) | – |
Generalized Entropy (ag9) | \(GE_p =-\frac{1}{R\alpha (1-\alpha )}\sum _{q=1}^{R}[({\frac{p_q}{\mu _p}})^\alpha -1],\alpha =0.5\) |
Maximum (ag10) | – |
Gini Index(ag11) | \(I_{Gini}(p)=\frac{2}{R\sum _{p}}[{\sum _{q=1}^{R}}(p_q*q)-(R+1)\sum _{p}]\) |
kurtosis (ag12) | \(\gamma _2=\displaystyle {\frac{\sum _{q=1}^{R}( p-\overline{p})^4/R}{(\sigma (p))^4}}\) |
Hoover Index | \(I_{Hoover}(p)= {\frac{1}{2}}\sum _{q=1}^{R}|\frac{p_q}{\sum _{p}}-\frac{1}{R}|\) |
Atkinson Index(ag13) | \(I_{Atkinson}(p)=1-{\frac{1}{\mu _p}}({\frac{1}{R}}\sum _{q=1}^{R}\sqrt{p_q})^2\) |
Shannon Entropy | \(E_p=-\frac{1}{R}\sum _{p=1}^{R}[\frac{freq(p_q)}{R}*\ln \frac{freq(p_q)}{R}]\) |