Table 5 Naming conventions.

From: An empirical analysis on webservice antipattern prediction in different variants of machine learning perspective

Abbreviation

Corresponding name

Abbreviation

Corresponding name

AG1

Variance

SIGF

Significant Features

AG2

Arithmetic Mean

INFG

Information Gain Attribute Ranking

AG3

Skewness

GNR

Gain Ratio Ranking

AG4

Minimum

OneR

OneR attribute evaluation

AG5

Median

PCA

Principal Component Analysis

AG6

Quartile1(25\(\%\))

CORR

Correlation Coefficient Analysis

AG7

Theli Index

CFS

Classifier subset Evaluator

AG8

Standard Deviation

GA

Genetic Algorithm

AG9

Quartile3(75\(\%\))

ELM

Extreme learning machine

AG10

Generalized Entropy

WELM

Weighted extreme learning machine

AG11

Maximum

SVC-LIN

Support Vector Classifier with linear Kernel

AG12

Gini Index

DL

Deep Learning

AG13

kurtosis

MLP-ADA

MLP with stochastic gradient-based optimizer proposed by Kingma

AG14

Hoover Index

DL-1

Deep Learning with 1 hidden Layer

AG15

Atkinson Index

GraB

Gradient Boosting Classifier

AG16

Shannon Entropy

EXTR

Extra Trees Classifier

AdaB

AdaBoost Classifier

FGWS

Fine-Grained anti-pattern

CSW

Chatty anti-pattern

RF

Random Forest Classifier

GOWS

God Object anti-pattern

BAG

Bagging Classifier

DWS

Data anti-pattern

MLP-SG

MLP with stochastic gradient descent.

AWS

Ambiguous Anti-pattern

LSSVM

Least square SVM

GNB

Gaussian Naive Bayes

ADASYN

Adaptive Synthetic Sampling Technique

BNB

Bernoulli Naive Bayes

SMOTE

Synthetic Minority Oversampling Technique

MNB

Multinomial Naive Bayes

SVMSMOTE

Support Vector Machine SMOTE

BLSMOTE

Borderline SMOTE

SVC-POLY

SVC with the polynomial kernel

UPSAM

UP sampling Technique

SVC-RBF

SVC with radial bias kernel

KDD

Knowledge Data Discovery

LOGR

Logistic Regression Analysis

FS

Feature Selection

MLP

Multi-layer Perceptron classifier

DT

Decision Tree

MLP-LNF

MLP with quasi-Newton methods