Table 2 Comparison experiment results on TuSimple. bold, italic, and bolditalic indicate the first, second, and third scores, respectively.

From: Aggregate global features into separable hierarchical lane detection transformer

Method

Accuracy (%)

FP (%)

FN (%)

PP

FPS

SCNN34

94.77

0.0753

0.0737

\(\checkmark\)

21

RESA35

95.24

0.0685

0.0571

–

68

UFLD36

95.61

0.1918

0.0404

–

144

FastDraw37

95.20

0.0760

0.0450

\(\checkmark\)

90

ENet-SAD38

96.64

0.0602

0.0205

\(\checkmark\)

75

Line-CNN39

96.87

0.0442

0.0197

\(\checkmark\)

30

PINet40

96.70

0.0294

0.0442

\(\checkmark\)

30

PolyLaneNet41

93.36

0.0942

0.0933

–

115

LSTR27

96.18

0.0291

0.0338

–

100

Ours

96.42

0.0279

0.0318

–

78