Table 3 Accuracy and precision for proposed schemes using the vehicle dataset.

From: Algorithmic and mathematical modeling for synthetically controlled overlapping

Approach

Accuracy

Precision

Method

0%

10%

20%

30%

40%

50%

0%

10%

20%

30%

40%

50%

Majority class overlapping scheme (MOS)

 KNN

75.29

74.71

66.29

65.57

62.57

53.97

75.12

74.44

65.39

64.79

62.69

55.00

 SVM

76.47

82.76

75.84

68.31

67.91

69.63

77.05

82.46

75.25

71.19

69.80

67.57

 RF

77.65

73.56

69.10

65.03

62.43

61.40

77.40

73.32

68.00

63.61

59.24

54.16

All class overlapping scheme (AOS)

 KNN

75.29

63.10

55.67

51.36

45.99

43.31

75.12

63.13

57.29

51.50

45.75

43.20

 SVM

76.47

66.84

72.41

62.73

56.12

57.87

77.05

66.95

72.47

61.88

54.22

58.64

 RF

75.29

64.17

59.49

58.55

54.01

50.54

75.20

64.22

67.29

59.34

53.29

53.87

Random class overlapping scheme (ROS)

 KNN

75.29

77.59

74.72

63.74

62.03

68.59

75.12

77.81

73.48

63.52

62.13

66.34

 SVM

76.47

77.59

78.09

73.63

67.91

73.82

77.05

80.03

77.00

73.53

66.96

80.48

 RF

77.06

78.74

77.53

74.73

61.50

70.16

77.40

79.70

76.93

74.77

60.07

68.61

SMOTE and all class overlapping scheme (AOS-SMOTE)

 KNN

74.29

75.98

68.48

67.02

77.60

58.88

73.50

76.99

69.98

67.99

77.59

56.76

 SVM

77.71

74.86

72.83

72.87

80.73

60.41

76.95

75.63

74.94

72.49

79.98

58.01

 RF

79.43

75.42

75.00

69.68

80.21

59.90

79.40

76.04

77.61

69.55

79.65

57.80