Table 3 Experiments on Microsoft BIG-15 Dataset.

From: Semantic lossless encoded image representation for malware classification

Model

Year

Techniques

Normalized image size

Acc

\(F1_{macro}\)

\(FPR_{macro}\)

KNN

–

–

\(512\times 512\)

0.91

0.912

0.011

DT

–

–

\(512\times 512\)

0.878

0.878

0.015

XGBoost

–

–

\(512\times 512\)

0.897

0.902

0.014

AlGarni et al.58

2022

EfficientNet

\(224\times 224\)

0.926

0.924

0.01

Parihar et al.59

2022

ResNet+Xception+EfficientNet

\(224\times 224\)

0.937

0.934

0.010

Kumar et al.21

2022

Deep CNN(VGG16 based)

\(224\times 224\)

0.945

0.944

0.009

Son et al.18

2022

k-NN+SVM+CNN

\(32\times 64\)

0.936

0.933

0.08

Mallik et al.20

2022

VGG16+BiLSTM

\(224\times 224\)

0.923

0.923

0.011

Rustam et al.22

2023

VVG16+ResNet

\(224\times 224\)

0.935

0.932

0.009

Proposed method

–

CNN+SPP+Transformer

No Limit

0.967

0.952

0.006

  1. Bold used to highlight the results of the proposed method.