Table 4 Experiments on Datafountain BDCI-21 Dataset.

From: Semantic lossless encoded image representation for malware classification

Model

Year

Techniques

Normalized image size

Acc

\(F1_{macro}\)

\(FPR_{macro}\)

KNN

–

–

\(512\times 512\)

0.969

0.964

0.008

DT

–

–

\(512\times 512\)

0.955

0.954

0.01

XGBoost

–

–

\(512\times 512\)

0.977

0.972

0.004

AlGarni et al.58

2022

EfficientNet

\(224\times 224\)

0.987

0.987

0.003

Parihar et al.59

2022

ResNet+Xception+EfficientNet

\(224\times 224\)

0.990

0.990

0.001

Kumar et al.21

2022

Deep CNN(VGG16 based)

\(224\times 224\)

0.992

0.991

0.001

Son et al.18

2022

k-NN+SVM+CNN

\(32\times 64\)

0.971

0.971

0.004

Mallik et al.20

2022

VGG16+BiLSTM

\(224\times 224\)

0.982

0.980

0.002

Rustam et al.22

2023

VVG16+ResNet

\(224\times 224\)

0.989

0.989

0.002

Proposed method

–

CNN+SPP+Transformer

No Limit

0.997

0.997

0.001

  1. Bold used to highlight the results of the proposed method.