Table 8 Results of the BELBFM model vs. known regression models on the test dataset (test 6).
Model type | Model hyperparameters | RMSE | MAE | R2 |
|---|---|---|---|---|
BELBFM | See Table 3 | 0.6002 | 0.4480 | 0.9506 |
Neural network | Preset: narrow neural network | number of fully connected layers: 1 | first layer size: 10 | activation: ReLU | iteration limit: 1000 | Regularization (lambda) = 0 | standardize data: yes | 0.6189 | 0.4599 | 0.9202 |
Neural network | Preset: medium neural network | number of fully connected layers: 1 | first layer size: 25 | activation: ReLU | iteration limit: 1000 | regularization (lambda) = 0 | standardize data: yes | 0.6196 | 0.4598 | 0.9201 |
Neural network | Preset: wide neural network | number of fully connected layers: 1 | first layer size: 100 | activation: ReLU | iteration limit: 1000 | regularization (lambda) = 0 | standardize data: yes | 0.6316 | 0.4687 | 0.9179 |
Neural network | Preset: bilayered neural network | number of fully connected layers: 2 | first layer size: 10 | second layer size: 10 | activation: ReLU | iteration limit: 1000 | regularization (lambda) = 0 | standardize data: yes | 0.6182 | 0.4589 | 0.9203 |
Neural network | Preset: trilayered neural network | number of fully connected layers: 3 | first layer size: 10 | second layer size: 10 | third layer size: 10 | activation: ReLU | iteration limit: 1000 | regularization (lambda) = 0 | standardize data: yes | 0.6176 | 0.4590 | 0.9204 |
Ensemble | Preset: boosted trees | minimum leaf size: 8 | number of learners: 30 | learning rate: 0.1 | 0.6497 | 0.4886 | 0.9145 |
Ensemble | Preset: bagged trees | minimum leaf size: 8 | number of learners: 30 | 0.6238 | 0.4631 | 0.9193 |
Kernel | Preset: SVM kernel | learner: SVM | number of expansion dimensions: auto | regularization strength (lambda): auto | kernel scale: auto | epsilon: auto | standardize data: yes | iteration limit: 1000 | 1.0608 | 0.6068 | 0.8091 |
Kernel | Preset: least squares regression kernel | learner: least squares kernel | number of expansion dimensions: auto | regularization strength (lambda): auto | kernel scale: auto | epsilon: auto | standardize data: yes | iteration limit: 1000 | 0.9393 | 0.5891 | 0.8460 |
Gaussian process regression | Preset: rational quadratic GPR | basic function: constant | kernel function: rational quadratic | use isotropic kernel: yes | kernel scale: automatic | signal standard deviation: automatic | sigma: automatic | standardize data: yes | optimize numeric parameters: yes | 0.6231 | 0.4618 | 0.9195 |
Gaussian process regression | Preset: squared exponential GPR | basic function: constant | kernel function: squared exponential | use isotropic kernel: yes | kernel scale: automatic | signal standard deviation: automatic | sigma: automatic | standardize data: yes | optimize numeric parameters: yes | 0.6183 | 0.4588 | 0.9203 |
Gaussian process regression | Preset: 5/2 GPR | basic function: constant | kernel function: matem 5/2 | use isotropic kernel: yes | kernel scale: automatic | signal standard deviation: automatic | sigma: automatic | standardize data: yes | optimize numeric parameters: yes | 0.6207 | 0.4598 | 0.9199 |
Gaussian process regression | Preset: Exponential GPR | basic function: constant | kernel function: exponential | use isotropic kernel: yes | kernel scale: automatic | signal standard deviation: automatic | sigma: automatic | standardize data: yes | optimize numeric parameters: yes | 0.6265 | 0.4663 | 0.9188 |
Efficient linear | Preset: efficient linear least square | linear: least square | regularization: auto | regularization strength (lambda): auto | relative coefficient tolerance (beta tolerance) 0.0001 | 0.6193 | 0.4600 | 0.9201 |
Efficient linear | Preset: efficient linear SVM | linear: SVM | regularization: auto | regularization strength (lambda): auto | relative coefficient tolerance (beta tolerance) 0.0001 | epsilon: auto | 0.6213 | 0.4611 | 0.9198 |
SVM | Preset: linear SVM | kernel function: linear | kernel scale: automatic | box constraint: automatic | epsilon: auto | standardize data: yes | 0.6216 | 0.4612 | 0.9197 |
SVM | Preset: quadratic SVM | kernel function: quadratic | kernel scale: automatic | box constraint: automatic | epsilon: auto | standardize data: yes | 0.6242 | 0.4659 | 0.9193 |
SVM | Preset: cubic SVM | kernel function: cubic | kernel scale: automatic | box constraint: automatic | epsilon: auto | standardize data: yes | 1.6897 | 0.8844 | 0.5416 |
SVM | Preset: fine gaussian SVM | kernel function: gaussian | kernel scale: 1 | box constraint: automatic | epsilon: auto | standardize data: yes | 1.1782 | 0.6509 | 0.7689 |
SVM | Preset: medium gaussian SVM | kernel function: gaussian | kernel scale: 4.1 | box constraint: automatic | epsilon: auto | standardize data: yes | 0.6446 | 0.4646 | 0.9155 |
SVM | Preset: coarse gaussian SVM | kernel function: gaussian | kernel scale: 16 | box constraint: automatic | epsilon: auto | standardize data: yes | 0.6216 | 0.4611 | 0.9197 |
Tree | Preset: fine tree | minimum leaf size: 4 | surrogate decision splits: off | 0.7658 | 0.5737 | 0.8903 |
Tree | Preset: medium tree | minimum leaf size: 12 | surrogate decision splits: off | 0.6985 | 0.5235 | 0.9049 |
Tree | Preset: coarse tree | minimum leaf size: 36 | surrogate decision splits: off | 0.6574 | 0.4892 | 0.9130 |
Linear regression | Preset: linear | terms: linear | robust optional: off | 0.6193 | 0.4601 | 0.9201 |
Linear regression | Preset: interactions linear | terms: interactions | robust optional: off | 0.6198 | 0.4603 | 0.9201 |
Linear regression | Preset: robust linear | terms: linear | robust optional: on | 0.6211 | 0.4609 | 0.9198 |
Stepwise linear regression | Preset: stepwise linear | initial terms: linear | upper bound on terms: interactions | maximum number of steps: 1000 | 0.6198 | 0.4603 | 0.9201 |