Table 8 Results of the BELBFM model vs. known regression models on the test dataset (test 6).

From: Simultaneous prediction of 10m and 100m wind speeds using a model inspired by brain emotional learning

Model type

Model hyperparameters

RMSE

MAE

R2

BELBFM

See Table 3

0.6002

0.4480

0.9506

Neural network

Preset: narrow neural network | number of fully connected layers: 1 | first layer size: 10 | activation: ReLU | iteration limit: 1000 | Regularization (lambda) = 0 | standardize data: yes

0.6189

0.4599

0.9202

Neural network

Preset: medium neural network | number of fully connected layers: 1 | first layer size: 25 | activation: ReLU | iteration limit: 1000 | regularization (lambda) = 0 | standardize data: yes

0.6196

0.4598

0.9201

Neural network

Preset: wide neural network | number of fully connected layers: 1 | first layer size: 100 | activation: ReLU | iteration limit: 1000 | regularization (lambda) = 0 | standardize data: yes

0.6316

0.4687

0.9179

Neural network

Preset: bilayered neural network | number of fully connected layers: 2 | first layer size: 10 | second layer size: 10 | activation: ReLU | iteration limit: 1000 | regularization (lambda) = 0 | standardize data: yes

0.6182

0.4589

0.9203

Neural network

Preset: trilayered neural network | number of fully connected layers: 3 | first layer size: 10 | second layer size: 10 | third layer size: 10 | activation: ReLU | iteration limit: 1000 | regularization (lambda) = 0 | standardize data: yes

0.6176

0.4590

0.9204

Ensemble

Preset: boosted trees | minimum leaf size: 8 | number of learners: 30 | learning rate: 0.1

0.6497

0.4886

0.9145

Ensemble

Preset: bagged trees | minimum leaf size: 8 | number of learners: 30

0.6238

0.4631

0.9193

Kernel

Preset: SVM kernel | learner: SVM | number of expansion dimensions: auto | regularization strength (lambda): auto | kernel scale: auto | epsilon: auto | standardize data: yes | iteration limit: 1000

1.0608

0.6068

0.8091

Kernel

Preset: least squares regression kernel | learner: least squares kernel | number of expansion dimensions: auto | regularization strength (lambda): auto | kernel scale: auto | epsilon: auto | standardize data: yes | iteration limit: 1000

0.9393

0.5891

0.8460

Gaussian process regression

Preset: rational quadratic GPR | basic function: constant | kernel function: rational quadratic | use isotropic kernel: yes | kernel scale: automatic | signal standard deviation: automatic | sigma: automatic | standardize data: yes | optimize numeric parameters: yes

0.6231

0.4618

0.9195

Gaussian process regression

Preset: squared exponential GPR | basic function: constant | kernel function: squared exponential | use isotropic kernel: yes | kernel scale: automatic | signal standard deviation: automatic | sigma: automatic | standardize data: yes | optimize numeric parameters: yes

0.6183

0.4588

0.9203

Gaussian process regression

Preset: 5/2 GPR | basic function: constant | kernel function: matem 5/2 | use isotropic kernel: yes | kernel scale: automatic | signal standard deviation: automatic | sigma: automatic | standardize data: yes | optimize numeric parameters: yes

0.6207

0.4598

0.9199

Gaussian process regression

Preset: Exponential GPR | basic function: constant | kernel function: exponential | use isotropic kernel: yes | kernel scale: automatic | signal standard deviation: automatic | sigma: automatic | standardize data: yes | optimize numeric parameters: yes

0.6265

0.4663

0.9188

Efficient linear

Preset: efficient linear least square | linear: least square | regularization: auto | regularization strength (lambda): auto | relative coefficient tolerance (beta tolerance) 0.0001

0.6193

0.4600

0.9201

Efficient linear

Preset: efficient linear SVM | linear: SVM | regularization: auto | regularization strength (lambda): auto | relative coefficient tolerance (beta tolerance) 0.0001 | epsilon: auto

0.6213

0.4611

0.9198

SVM

Preset: linear SVM | kernel function: linear | kernel scale: automatic | box constraint: automatic | epsilon: auto | standardize data: yes

0.6216

0.4612

0.9197

SVM

Preset: quadratic SVM | kernel function: quadratic | kernel scale: automatic | box constraint: automatic | epsilon: auto | standardize data: yes

0.6242

0.4659

0.9193

SVM

Preset: cubic SVM | kernel function: cubic | kernel scale: automatic | box constraint: automatic | epsilon: auto | standardize data: yes

1.6897

0.8844

0.5416

SVM

Preset: fine gaussian SVM | kernel function: gaussian | kernel scale: 1 | box constraint: automatic | epsilon: auto | standardize data: yes

1.1782

0.6509

0.7689

SVM

Preset: medium gaussian SVM | kernel function: gaussian | kernel scale: 4.1 | box constraint: automatic | epsilon: auto | standardize data: yes

0.6446

0.4646

0.9155

SVM

Preset: coarse gaussian SVM | kernel function: gaussian | kernel scale: 16 | box constraint: automatic | epsilon: auto | standardize data: yes

0.6216

0.4611

0.9197

Tree

Preset: fine tree | minimum leaf size: 4 | surrogate decision splits: off

0.7658

0.5737

0.8903

Tree

Preset: medium tree | minimum leaf size: 12 | surrogate decision splits: off

0.6985

0.5235

0.9049

Tree

Preset: coarse tree | minimum leaf size: 36 | surrogate decision splits: off

0.6574

0.4892

0.9130

Linear regression

Preset: linear | terms: linear | robust optional: off

0.6193

0.4601

0.9201

Linear regression

Preset: interactions linear | terms: interactions | robust optional: off

0.6198

0.4603

0.9201

Linear regression

Preset: robust linear | terms: linear | robust optional: on

0.6211

0.4609

0.9198

Stepwise linear regression

Preset: stepwise linear | initial terms: linear | upper bound on terms: interactions | maximum number of steps: 1000

0.6198

0.4603

0.9201