Table 4 Comparative analysis of AAIFLF-PPCD method with existing models20,21,22,38,39,40.

From: Advanced artificial intelligence with federated learning framework for privacy-preserving cyberthreat detection in IoT-assisted sustainable smart cities

Technique

\(\:\varvec{A}\varvec{c}\varvec{c}{\varvec{u}}_{\varvec{y}}\)

\(\:\varvec{P}\varvec{r}\varvec{e}{\varvec{c}}_{\varvec{n}}\)

\(\:\varvec{R}\varvec{e}\varvec{c}{\varvec{a}}_{\varvec{l}}\)

\(\:{\varvec{F}1}_{\varvec{s}\varvec{c}\varvec{o}\varvec{r}\varvec{e}}\)

SVM Classifier

81.86

66.22

69.57

70.56

kNN Algorithm

86.88

77.90

70.04

69.77

MLP Algorithm

92.93

81.71

75.62

93.31

CNN + GRU Model

87.44

78.34

70.13

88.31

HZDA-5G IIoT

99.33

94.34

94.46

94.84

PSO Ensemble

98.80

96.56

95.97

95.49

IRMOFNN-AD

99.10

95.33

95.33

95.45

XAI

98.54

94.61

94.58

94.80

SHAP

97.96

94.00

93.87

94.26

VAE

97.28

93.46

93.16

93.71

AGRU

96.67

92.66

92.36

93.12

AAIFLF-PPCD

99.47

97.20

96.84

96.92