Table 10 Equations of the prediction models.
Model | Equation | Ref. |
|---|---|---|
ACI 209 | \({\varepsilon}_{sh\left(t\right)}=\frac{t}{t+35}{\varepsilon}_{shu}\) \({\varepsilon}_{shu}=780\times{10}^{-6}\times{r}_{sh}\) | |
CEB-FIP | \({\varepsilon}_{sh\left(t\right)}={\varepsilon}_{shu}\beta\left(h\right)\beta\left(t\right)\) | |
B3 | \({\varepsilon}_{sh\left(t\right)}=-{\varepsilon}_{shu}{k}_{h}S\left(t\right)\) \({\varepsilon}_{shu}=-{a}_{1}\times{a}_{2}\times\left[0.019\times{w}^{2.1}\times{\left({f}_{c}\right)}^{-0.28}+270\right]\times{10}^{-6}\) | |
GL2000 | \({\varepsilon}_{sh\left(t\right)}={\varepsilon}_{shu}(1-1.18{h}^{4})\sqrt{\frac{(t-{t}_{o})}{t-{t}_{0}+0.15{\left(\frac{v}{s}\right)}^{2}}}\) \({\varepsilon}_{shu}=900\times k{\times{\left(\frac{30}{{f}_{c}}\right)}^{\frac{1}{2}}\times10}^{-6}\) | |
Sakata | \({\varepsilon}_{sh\left(t\right)}=\frac{{\varepsilon}_{shu}t}{\beta+t}\) \({\varepsilon}_{shu}=\frac{k\left(1-h\right)w}{\left[1+150exp\left(-\frac{500}{{f}_{c}}\right)\right]\left(1+\eta\times{t}_{0}\right)}\) |