Table 2 Accuracy(%) comparison with different models on nine datasets.

From: GTAT: empowering graph neural networks with cross attention

Model

Core

Citeseer

Pubmed

Computers

Photo

Physics

CS

WikiCS

Arxiv

GCN

80.67±1.10

68.10±1.47

78.22±1.49

82.43±1.47

90.84±0.72

92.98±0.82

91.45±0.31

75.04±0.82

70.33 ± 0.32

FAGCN

80.64±1.49

68.13±1.34

78.85±1.80

83.63±1.37

91.71±1.06

93.47±0.75

92.52±0.34

74.43±1.05

67.12 ± 0.85

SGC

79.51±1.49

67.75±1.39

76.24±2.35

83.27±1.21

91.01±1.02

92.40±0.29

91.95±0.48

74.32±1.54

70.23 ± 0.26

SAGE

80.50±1.54

68.60±1.20

78.65±1.83

82.77±1.23

91.52±0.76

92.92±0.55

90.98±0.50

73.99±1.40

69.98 ± 0.20

GAT

81.06±1.03

68.61±1.22

78.51±1.63

83.21±1.42

91.33±0.80

93.09±0.77

91.34±0.40

75.21±0.98

70.41 ± 0.14

GAT2

81.16±1.34

68.40±1.17

78.51±1.76

83.62±1.51

91.47±0.98

92.89±0.74

91.32±0.29

75.39±1.14

70.98 ± 0.27

mGCMN

81.21±0.91

68.69±1.31

78.87±1.60

82.88±1.22

91.34±0.77

93.38±0.54

91.12±0.36

73.94±0.11

70.12 ± 0.10

Hyper-Conv.

80.11±1.02

67.41±1.47

78.16±1.04

79.47±1.85

88.59±0.68

92.65±0.49

89.14±0.35

73.26±2.08

70.08 ± 0.26

Dir-GNN

77.89±1.51

67.44±1.12

75.46±2.29

80.19±1.67

90.42±1.22

93.00±0.65

91.92±0.23

73.61±1.05

69.11 ± 0.26

GTAT

81.50±1.27

68.91±1.51

79.34±0.80

83.93±1.09

91.70±0.39

93.41±0.35

91.68±0.21

76.01±1.15

71.02 ± 0.17

GTAT2

81.65±1.49

68.78±1.58

79.05±1.33

84.37±1.46

91.79±0.41

93.39±0.53

91.75±0.37

75.93±1.15

71.37 ±0.14