Table 3 Unsupervised pose estimation results with different detection models on large pose dataset.

From: Robust pose estimation for non-cooperative space objects based on multichannel matching method

Methods

mAUC

APE

mMS

Sift-Superglue

0.355

7.391

0.115

HardNet-smnn

0.334

13.18

0.000

KeyNet-mnn

0.278

10.08

0.090

LoFTR

0.415

4.354

0.165

Hardnet-Superglue

0.420

4.985

0.135

Sift-mnn

0.136

17.36

0.044

Superpoint-Superglue

0.208

30.02

0.069

Proposed

0.636

1.776

0.418

  1. Significant values are in [bold].