Table 5 CN-LDF sub-decision matrix 1.

From: Framework development of continuous non-linear Diophantine fuzzy sets and its application to renewable energy source selection

Economical

Service life

Investment cost

maintenance cost

\({\widetilde{A}}_{1}\)

\(\left(\langle 1\mathcal{J},1\mathcal{K}\rangle ,\langle .9\mathcal{J},.7\mathcal{K}\rangle \right)\)

\(\left(\langle 1\mathcal{J},.87\mathcal{K}\rangle ,\langle .75\mathcal{J},.9\mathcal{K}\rangle \right)\)

\(\left(\langle .95\mathcal{J},1\mathcal{K}\rangle ,\langle .75\mathcal{J},.85\mathcal{K}\rangle \right)\)

\({\widetilde{A}}_{2}\)

\(\left(\langle .87\mathcal{J},.9\mathcal{K}\rangle ,\langle .75\mathcal{J},.9\mathcal{K}\rangle \right)\)

\(\left(\langle 1\mathcal{J},1\mathcal{K}\rangle ,\langle .7\mathcal{J},.9\mathcal{K}\rangle \right)\)

\(\left(\langle .87\mathcal{J},1\mathcal{K}\rangle ,\langle .9\mathcal{J},.75\mathcal{K}\rangle \right)\)

\({\widetilde{A}}_{3}\)

\(\left(\langle 1\mathcal{J},1\mathcal{K}\rangle ,\langle .8\mathcal{J},.8\mathcal{K}\rangle \right)\)

\(\left(\langle .87\mathcal{J},1\mathcal{K}\rangle ,\langle .9\mathcal{J},.75\mathcal{K}\rangle \right)\)

\(\left(\langle .9\mathcal{J},.9\mathcal{K}\rangle ,\langle .85\mathcal{J},.8\mathcal{K}\rangle \right)\)

\({\widetilde{A}}_{4}\)

\(\left(\langle .95\mathcal{J},1\mathcal{K}\rangle ,\langle .75\mathcal{J},.85\mathcal{K}\rangle \right)\)

\(\left(\langle .9\mathcal{J},.9\mathcal{K}\rangle ,\langle .85\mathcal{J},.8\mathcal{K}\rangle \right)\)

\(\left(\langle .8\mathcal{J},.9\mathcal{K}\rangle ,\langle .85\mathcal{J},.8\mathcal{K}\rangle \right)\)

\({\widetilde{A}}_{5}\)

\(\left(\langle 1\mathcal{J},.87\mathcal{K}\rangle ,\langle .75\mathcal{J},.9\mathcal{K}\rangle \right)\)

\(\left(\langle 1\mathcal{J},1\mathcal{K}\rangle ,\langle .9\mathcal{J},.7\mathcal{K}\rangle \right)\)

\(\left(\langle .95\mathcal{J},1\mathcal{K}\rangle ,\langle .75\mathcal{J},.85\mathcal{K}\rangle \right)\)

 

Production cost

Payback period

 

\({\widetilde{A}}_{1}\)

\(\left(\langle .8\mathcal{J},.9\mathcal{K}\rangle ,\langle .85\mathcal{J},.8\mathcal{K}\rangle \right)\)

\(\left(\langle 1\mathcal{J},1\mathcal{K}\rangle ,\langle .7\mathcal{J},.9\mathcal{K}\rangle \right)\)

 

\({\widetilde{A}}_{2}\)

\(\left(\langle 1\mathcal{J},1\mathcal{K}\rangle ,\langle .9\mathcal{J},.7\mathcal{K}\rangle \right)\)

\(\left(\langle .87\mathcal{J},1\mathcal{K}\rangle ,\langle .9\mathcal{J},.75\rangle \right)\)

 

\({\widetilde{A}}_{3}\)

\(\left(\langle 1\mathcal{J},1\mathcal{K}\rangle ,\langle .85\mathcal{J},.75\mathcal{K}\rangle \right)\)

\(\left(\langle 1\mathcal{J},1\mathcal{K}\rangle ,\langle .7\mathcal{J},.9\mathcal{K}\rangle \right)\)

 

\({\widetilde{A}}_{4}\)

\(\left(\langle .87\mathcal{J},.1\mathcal{K}\rangle ,\langle .9\mathcal{J},.75\mathcal{K}\rangle \right)\)

\(\left(\langle .87\mathcal{J},.9\mathcal{K}\rangle ,\langle .75\mathcal{J},.9\mathcal{K}\rangle \right)\)

 

\({\widetilde{A}}_{5}\)

\(\left(\langle 1\mathcal{J},1\mathcal{K}\rangle ,\langle .8\mathcal{J},.8\mathcal{K}\rangle \right)\)

\(\left(\langle .87\mathcal{J},.9\mathcal{K}\rangle ,\langle .75\mathcal{J},.9\mathcal{K}\rangle \right)\)

Â