Table 6 CN-LDF sub-decision matrix 2.

From: Framework development of continuous non-linear Diophantine fuzzy sets and its application to renewable energy source selection

Technical

Availability

Capacity

Resource density

\({\widetilde{A}}_{1}\)

\(\left(\langle 1\mathcal{J},.87\mathcal{K}\rangle ,\langle .75\mathcal{J},.9\mathcal{K}\rangle \right)\)

\(\left(\langle 1\mathcal{J},1\mathcal{K}\rangle ,\langle .9\mathcal{J},.7\mathcal{K}\rangle \right)\)

\(\left(\langle .95\mathcal{J},1\mathcal{K}\rangle ,\langle .75\mathcal{J},.85\mathcal{K}\rangle \right)\)

\({\widetilde{A}}_{2}\)

\(\left(\langle .9\mathcal{J},.9\mathcal{K}\rangle ,\langle .85\mathcal{J},.8\mathcal{K}\rangle \right)\)

\(\left(\langle .95\mathcal{J},1\mathcal{K}\rangle ,\langle .75\mathcal{J},.85\mathcal{K}\rangle \right)\)

\(\left(\langle .87\mathcal{J},1\mathcal{K}\rangle ,\langle .9\mathcal{J},.75\mathcal{K}\rangle \right)\)

\({\widetilde{A}}_{3}\)

\(\left(\langle 1\mathcal{J},1\mathcal{K}\rangle ,\langle .9\mathcal{J},.7\mathcal{K}\rangle \right)\)

\(\left(\langle 1\mathcal{J},.87\mathcal{K}\rangle ,\langle .75\mathcal{J},.9\mathcal{K}\rangle \right)\)

\(\left(\langle .8\mathcal{J},.9\mathcal{K}\rangle ,\langle .85\mathcal{J},.8\mathcal{K}\rangle \right)\)

\({\widetilde{A}}_{4}\)

\(\left(\langle .87\mathcal{J},1\mathcal{K}\rangle ,\langle .9\mathcal{J},.75\mathcal{K}\rangle \right)\)

\(\left(\langle .87\mathcal{J},.9\mathcal{K}\rangle ,\langle .75\mathcal{J},.9\mathcal{K}\rangle \right)\)

\(\left(\langle 1\mathcal{J},1\mathcal{K}\rangle ,\langle .9\mathcal{J},.7\mathcal{K}\rangle \right)\)

\({\widetilde{A}}_{5}\)

\(\left(\langle .9\mathcal{J},.9\mathcal{K}\rangle ,\langle .9\mathcal{J},.75\mathcal{K}\rangle \right)\)

\(\left(\langle 1\mathcal{J},1\mathcal{K}\rangle ,\langle .65\mathcal{J},.9\mathcal{K}\rangle \right)\)

\(\left(\langle 1\mathcal{J},1\mathcal{K}\rangle ,\langle .7\mathcal{J},.9\mathcal{K}\rangle \right)\)

 

Efficiency

Grid compatibility

 

\({\widetilde{A}}_{1}\)

\(\left(\langle 1\mathcal{J},1\mathcal{K}\rangle ,\langle .8\mathcal{J},.8\mathcal{K}\rangle \right)\)

\(\left(\langle .87\mathcal{J},.9\mathcal{K}\rangle ,\langle .75\mathcal{J},.9\mathcal{K}\rangle \right)\)

 

\({\widetilde{A}}_{2}\)

\(\left(\langle .87\mathcal{J},.9\mathcal{K}\rangle ,\langle .75\mathcal{J},.9\mathcal{K}\rangle \right)\)

\(\left(\langle 8\mathcal{J},.9\mathcal{K}\rangle ,\langle .85\mathcal{J},.8\rangle \right)\)

 

\({\widetilde{A}}_{3}\)

\(\left(\langle 1\mathcal{J},1\mathcal{K}\rangle ,\langle .7\mathcal{J},.9\mathcal{K}\rangle \right)\)

\(\left(\langle .95\mathcal{J},1\mathcal{K}\rangle ,\langle .75\mathcal{J},.85\mathcal{K}\rangle \right)\)

 

\({\widetilde{A}}_{4}\)

\(\left(\langle .87\mathcal{J},.1\mathcal{K}\rangle ,\langle .9\mathcal{J},.75\mathcal{K}\rangle \right)\)

\(\left(\langle 1\mathcal{J},.87\mathcal{K}\rangle ,\langle .75\mathcal{J},.9\mathcal{K}\rangle \right)\)

 

\({\widetilde{A}}_{5}\)

\(\left(\langle 1\mathcal{J},1\mathcal{K}\rangle ,\langle .65\mathcal{J},.9\mathcal{K}\rangle \right)\)

\(\left(\langle .9\mathcal{J},.9\mathcal{K}\rangle ,\langle .85\mathcal{J},.8\mathcal{K}\rangle \right)\)

Â