Table 6 Continuation of I and Q dimension antenna combinations and mapping (\(N_T = 8\) and \(N_c=64\)).

From: Error performance analysis of generalized quadrature spatial modulation with labelling diversity

Spatial input

bits

Antenna pair

bit indices

I-dimension antenna

pairs

Q-dimension antenna

pairs

Rotation angle

d

010110

\(T_{X2},T_{X4}\)

\(T_{X1},T_{X3}\)

\(\frac{2\pi }{3}\)

d

010111

\(T_{X2},T_{X5}\)

\(T_{X3},T_{X4}\)

\(\frac{2\pi }{3}\)

d

011000

\(T_{X1},T_{X2}\)

\(T_{X5},T_{X6}\)

0

d

011001

\(T_{X1},T_{X3}\)

\(T_{X4},T_{X6}\)

0

d

011010

\(T_{X1},T_{X4}\)

\(T_{X3},T_{X6}\)

0

d

011011

\(T_{X1},T_{X5}\)

\(T_{X2},T_{X6}\)

\(\frac{\pi }{3}\)

d

011100

\(T_{X1},T_{X6}\)

\(T_{X4},T_{X5}\)

\(\frac{\pi }{3}\)

d

011101

\(T_{X2},T_{X3}\)

\(T_{X1},T_{X4}\)

\(\frac{\pi }{3}\)

d

011110

\(T_{X2},T_{X4}\)

\(T_{X1},T_{X3}\)

\(\frac{2\pi }{3}\)

d

011111

\(T_{X2},T_{X5}\)

\(T_{X3},T_{X4}\)

\(\frac{2\pi }{3}\)

d

100000

\(T_{X1},T_{X2}\)

\(T_{X5},T_{X6}\)

0

d

100001

\(T_{X1},T_{X3}\)

\(T_{X4},T_{X6}\)

0

d

100010

\(T_{X1},T_{X4}\)

\(T_{X3},T_{X6}\)

0

d

100011

\(T_{X1},T_{X5}\)

\(T_{X2},T_{X6}\)

\(\frac{\pi }{3}\)

d

100100

\(T_{X1},T_{X6}\)

\(T_{X4},T_{X5}\)

\(\frac{\pi }{3}\)

d

100101

\(T_{X2},T_{X3}\)

\(T_{X1},T_{X4}\)

\(\frac{\pi }{3}\)

d

100110

\(T_{X2},T_{X4}\)

\(T_{X1},T_{X3}\)

\(\frac{2\pi }{3}\)

d

100101

\(T_{X2},T_{X3}\)

\(T_{X1},T_{X4}\)

\(\frac{\pi }{3}\)

d

100110

\(T_{X2},T_{X4}\)

\(T_{X1},T_{X3}\)

\(\frac{2\pi }{3}\)