Table 3 Macro-average F1 results on different datasets (%).

From: A hybrid re-fusion model for text classification

Model

MR

Ohsumed

R52

R8

BERT

\(85.50\pm 0.21\)

\(62.50\pm 0.10\)

\(85.30\pm 0.15\)

\(95.05\pm 0.19\)

XLNet

\(86.01\pm 0.20\)

\(62.67\pm 0.15\)

\(85.22\pm 0.14\)

\(95.10\pm 0.17\)

SGC

\(71.88\pm 0.18\)

\(61.27\pm 0.23\)

\(74.18\pm 0.17\)

\(93.73\pm 0.21\)

TextGCN

\(76.53\pm 0.18\)

\(62.15\pm 0.35\)

\(67.75\pm 0.21\)

\(93.83\pm 0.27\)

TextING

\(79.66\pm 0.17\)

\(61.31\pm 0.32\)

\(73.32\pm 0.17\)

\(93.60\pm 0.22\)

GLTC

\(80.20\pm 0.27\)

\(61.98\pm 0.24\)

\(74.81\pm 0.17\)

\(95.66\pm 0.18\)

RB-GAT

\(79.13\pm 0.21\)

\(62.48\pm 0.32\)

\(74.11\pm 0.14\)

\(95.71\pm 0.15\)

BertGCN

\(86.19\pm 0.22\)

\(62.17\pm 0.11\)

\(85.91\pm 0.26\)

\(95.76\pm 0.14\)

XLG-Net

\({\textbf {88.55}}\pm {\textbf {0.22}}\)

\({\textbf {63.32}}\pm {\textbf {0.34}}\)

\({\textbf {86.45}}\pm {\textbf {0.31}}\)

\({\textbf {96.00}}\pm {\textbf {0.26}}\)

  1. We run all models 10 times and take the average.