Table 2 Comparison results of all models.
From: An interpretable machine learning-assisted diagnostic model for Kawasaki disease in children
Model | Accuracy | Sensitivity | Specificity | Precision | F1-score |
|---|---|---|---|---|---|
KNN | 0.8968 | 0.8947 | 0.9003 | 0.9379 | 0.9158 |
LR | 0.9037 | 0.9166 | 0.8819 | 0.9288 | 0.9227 |
SVM | 0.9078 | 0.9232 | 0.8819 | 0.9293 | 0.9262 |
DT | 0.883 | 0.8969 | 0.8597 | 0.9149 | 0.9058 |
MLP | 0.9105 | 0.9254 | 0.8856 | 0.9315 | 0.9284 |
RF | 0.9202 | 0.9407 | 0.8856 | 0.9326 | 0.9366 |
AdaBoost | 0.9284 | 0.9473 | 0.8966 | 0.9391 | 0.9432 |
CatBoost | 0.9312 | 0.9451 | 0.9077 | 0.9451 | 0.9451 |
GBDT | 0.9284 | 0.9364 | 0.9151 | 0.9488 | 0.9426 |
XGBoost | 0.9381 | 0.9517 | 0.9151 | 0.9496 | 0.9507 |