Table 6 Performance of classifiers using ensemble stacking methods on a mathematics dataset.
Algorithms | Mathematics dataset | |||||
|---|---|---|---|---|---|---|
Ensemble staking methods | ||||||
Chi-square | Information gain | Correlation heat map | ||||
Accuracy | CV-score | Accuracy | CV-score | Accuracy | CV-score | |
DT | 90.94 | 94.11 | 94.17 | 89.07 | 92.02 | 91.59 |
RF | 95.80 | 94.38 | 91.09 | 92.95 | 93.46 | 92.43 |
SVM | 88.76 | 93.27 | 89.85 | 94.11 | 91.30 | 90.75 |
NN | 89.49 | 90.11 | 89.66 | 88.16 | 92.39 | 90.75 |
NB | 90.57 | 92.43 | 88.76 | 96.63 | 92.02 | 91.59 |
J48 | 90.59 | 94.11 | 90.57 | 93.11 | 94.20 | 91.59 |