Table 9 Performance evaluation of different feature selection and classification algorithm combinations on mathematics dataset.

From: Advancing educational data mining for enhanced student performance prediction: a fusion of feature selection algorithms and classification techniques with dynamic feature ensemble evolution

Combination

Feature Selection

Classification

Accuracy

Precision

Recall

F1-Score

1

Chi-square

DT

90.94

91.45

92.34

91.11

2

Chi-square

RF

95.80

92.39

88.12

90.05

3

Chi-square

SVM

88.76

93.12

89.12

91.15

4

Chi-square

NN

89.49

90.45

91.45

91.15

5

Chi-square

NB

90.57

92.56

92.00

91.15

6

Chi-square

J48

90.59

94.42

90.05

92.45

7

Information gain

DT

94.17

89.90

93.47

91.15

8

Information gain

RF

91.09

92.88

86.66

89.09

9

Information gain

SVM

89.85

94.78

90.69

92.67

10

Information gain

NN

89.66

88.12

88.35

88.67

11

Information gain

NB

88.76

96.47

91.23

93.03

12

Information gain

J48

90.57

91.45

88.20

89.09

13

Correlation heat map

DT

92.02

91.67

90.00

91.69

14

Correlation heat map

RF

93.46

91.67

89.99

87.34

15

Correlation heat map

SVM

91.30

90.43

91.10

89.47

16

Correlation heat map

NN

92.39

92.09

88.37

89.73

17

Correlation heat map

NB

92.02

91.90

91.13

91.76

18

Correlation heat map

J48

94.20

93.56

92.05

92.05