Table 1 Types of solutions of (6).

From: Sub pico-second pulses in mono-mode optical fibers with Triki-Biswas model

\(\text {No.}\)

\(s_1\)

\(s_2\)

\(s_{3}\)

\(V(\eta )\)

1

1

\(-(1+\Upsilon ^2)\)

\(2\Upsilon ^2\)

\(\text {sn}(\eta )\)

2

\(-\Upsilon ^2(1-\Upsilon ^2)\)

\(2\Upsilon ^2-1\)

2

\(\text {ds}(\eta )\)

3

\(1-\Upsilon ^2\)

\(2-\Upsilon ^2\)

2

\(\text {cs}(\eta )\)

4

\(1-\Upsilon ^2\)

\(2\Upsilon ^2-1\)

\(-2\Upsilon ^2\)

\(\text {cn}(\eta )\)

5

\(\Upsilon ^2-1\)

\(2-\Upsilon ^2\)

\(-2\)

\(\text {dn}(\eta )\)

6

\(\frac{1}{4}\)

\(\frac{(\Upsilon ^2-2)}{2}\)

\(\frac{\Upsilon ^2}{2}\)

\(\frac{\text {sn}(\eta )}{1\pm \text {dn}(\eta ) }\)

7

\(\frac{\Upsilon ^2}{4}\)

\(\frac{(\Upsilon ^2-2)}{2}\)

\(\frac{\Upsilon ^2}{2}\)

\(\frac{\text {sn}(\eta )}{1\pm \text {dn}(\eta ) }\)

8

\(\frac{-(1-\Upsilon ^2)^2}{4}\)

\(\frac{(\Upsilon ^2+1)}{2}\)

\(\frac{-1}{2}\)

\(\eta \text {cn}(\eta )\pm \text {dn}(\eta )\)

9

\(\frac{\Upsilon ^2-1}{4}\)

\(\frac{(\Upsilon ^2+1)}{2}\)

\(\frac{\Upsilon ^2-1}{2}\)

\(\frac{\text {dn}(\eta )}{1\pm \text {sn}(\eta ) }\)

10

\(\frac{1-\Upsilon ^2}{4}\)

\(\frac{1-\Upsilon ^2}{2}\)

\(\frac{1-\Upsilon ^2}{2}\)

\(\frac{\text {cn}(\eta )}{1\pm \text {sn}(\eta ) }\)

11

\(\frac{1}{4}\)

\(\frac{(1-\Upsilon ^2)^2}{2}\)

\(\frac{(1-\Upsilon ^2)^2}{2}\)

\(\frac{\text {sn}(\eta )}{\text {dn}(\eta ) \pm \text {cn}(\eta ) }\)

12

0

0

2

\(\frac{F}{\eta }\)

13

0

1

0

\(Fe^{\eta }\)