Table 1 Types of solutions of (6).
From: Sub pico-second pulses in mono-mode optical fibers with Triki-Biswas model
\(\text {No.}\) | \(s_1\) | \(s_2\) | \(s_{3}\) | \(V(\eta )\) |
|---|---|---|---|---|
1 | 1 | \(-(1+\Upsilon ^2)\) | \(2\Upsilon ^2\) | \(\text {sn}(\eta )\) |
2 | \(-\Upsilon ^2(1-\Upsilon ^2)\) | \(2\Upsilon ^2-1\) | 2 | \(\text {ds}(\eta )\) |
3 | \(1-\Upsilon ^2\) | \(2-\Upsilon ^2\) | 2 | \(\text {cs}(\eta )\) |
4 | \(1-\Upsilon ^2\) | \(2\Upsilon ^2-1\) | \(-2\Upsilon ^2\) | \(\text {cn}(\eta )\) |
5 | \(\Upsilon ^2-1\) | \(2-\Upsilon ^2\) | \(-2\) | \(\text {dn}(\eta )\) |
6 | \(\frac{1}{4}\) | \(\frac{(\Upsilon ^2-2)}{2}\) | \(\frac{\Upsilon ^2}{2}\) | \(\frac{\text {sn}(\eta )}{1\pm \text {dn}(\eta ) }\) |
7 | \(\frac{\Upsilon ^2}{4}\) | \(\frac{(\Upsilon ^2-2)}{2}\) | \(\frac{\Upsilon ^2}{2}\) | \(\frac{\text {sn}(\eta )}{1\pm \text {dn}(\eta ) }\) |
8 | \(\frac{-(1-\Upsilon ^2)^2}{4}\) | \(\frac{(\Upsilon ^2+1)}{2}\) | \(\frac{-1}{2}\) | \(\eta \text {cn}(\eta )\pm \text {dn}(\eta )\) |
9 | \(\frac{\Upsilon ^2-1}{4}\) | \(\frac{(\Upsilon ^2+1)}{2}\) | \(\frac{\Upsilon ^2-1}{2}\) | \(\frac{\text {dn}(\eta )}{1\pm \text {sn}(\eta ) }\) |
10 | \(\frac{1-\Upsilon ^2}{4}\) | \(\frac{1-\Upsilon ^2}{2}\) | \(\frac{1-\Upsilon ^2}{2}\) | \(\frac{\text {cn}(\eta )}{1\pm \text {sn}(\eta ) }\) |
11 | \(\frac{1}{4}\) | \(\frac{(1-\Upsilon ^2)^2}{2}\) | \(\frac{(1-\Upsilon ^2)^2}{2}\) | \(\frac{\text {sn}(\eta )}{\text {dn}(\eta ) \pm \text {cn}(\eta ) }\) |
12 | 0 | 0 | 2 | \(\frac{F}{\eta }\) |
13 | 0 | 1 | 0 | \(Fe^{\eta }\) |