Table 4 Comparing ODEFormer with RNN series models.

From: Construction of a traffic flow prediction model based on neural ordinary differential equations and Spatiotemporal adaptive networks

RNN series models

PEMS03

PEMS04

PEMS07

PEMS08

MAE

RMSE

MAPE (%)

MAE

RMSE

MAPE (%)

MAE

RMSE

MAPE (%)

MAE

RMSE

MAPE (%)

DCRNN

18.18

30.31

18.91

24.70

38.12

17.12

25.30

38.58

11.66

17.86

27.83

11.45

LSTM

21.33

35.11

23.33

27.14

41.59

18.20

29.98

45.84

13.20

22.20

34.06

14.20

EnhanceNet

16.05

28.33

15.83

20.44

32.37

13.58

21.87

35.57

9.13

16.33

25.46

10.39

ST-WA

15.17

26.63

15.83

19.06

31.02

12.52

20.74

34.05

8.77

15.41

24.62

9.94

ODEFormer

14.37

25.62

14.25

18.31

29.66

12.51

19.48

32.14

8.25

13.85

22.88

9.05

\(\Delta {E_{\text{1}}}\)

3.81

4.69

4.66

6.39

8.46

4.61

5.82

6.44

3.41

4.01

4.95

2.4

\(\Delta {E_2}\)

6.96

9.49

9.08

8.83

11.93

5.69

10.5

13.71

4.95

8.35

11.18

5.15

\(\Delta {E_{\text{3}}}\)

1.68

2.71

1.58

2.13

2.71

1.07

2.39

3.43

0.88

2.48

2.58

1.34

\(\Delta {E_{\text{4}}}\)

0.8

1.01

1.58

0.75

1.36

0.01

1.26

1.91

0.52

1.56

1.74

0.89

\(\overline {{\Delta {E_N}}}\)

MAE:4.23 RMSE:5.52 MAPE:2.99%

\(\overline {{\Delta {P_N}}}\)

MAE:18.91% RMSE:15.77% MAPE:0.18%