Table 1 Comparison of performance when COVID-19 is considered a positive class.

From: The shallowest transparent and interpretable deep neural network for image recognition

Base

Metric

Our

33

36

34

38

3

Base only

VGG-16

Accuracy

86.24

86.12

86.01

85.89

84.63

79.73

82.45

Precision

0.96

0.98

0.99

0.99

0.97

0.87

0.97

Recall

0.94

0.99

0.99

0.98

0.99

0.92

0.98

F1-score

0.95

0.98

0.99

0.98

0.97

0.89

0.97

VGG-19

Accuracy

86.24

83.94

84.98

84.40

88.99

81.78

82.68

Precision

0.96

0.98

0.98

0.99

0.91

0.84

0.96

Recall

0.94

0.99

0.98

0.98

0.96

0.95

0.98

F1-score

0.95

0.98

0.98

0.98

0.93

0.89

0.97

ResNet-34

Accuracy

86.24

85.77

85.55

85.20

84.29

82.90

84.89

Precision

0.96

0.98

0.99

0.99

0.99

0.99

0.99

Recall

0.94

0.99

0.99

0.98

0.99

0.99

0.99

F1-score

0.95

0.99

0.99

0.98

0.99

0.98

0.99

ResNet-152

Accuracy

86.24

88.30

86.93

86.70

86.40

83.60

88.03

Precision

0.96

0.99

0.98

0.98

0.99

0.87

0.98

Recall

0.94

0.98

0.99

0.99

0.99

0.89

0.99

F1-score

0.95

0.98

0.99

0.98

0.99

0.88

0.98

DenseNet-121

Accuracy

86.24

87.50

87.27

87.04

86.47

85.90

88.41

Precision

0.96

0.99

0.99

0.98

0.99

0.98

0.99

Recall

0.94

0.99

0.99

0.99

0.98

0.98

0.99

F1-score

0.95

0.99

0.99

0.98

0.98

0.98

0.99

DenseNet-161

Accuracy

86.24

88.07

87.39

87.27

87.04

86.58

88.42

Precision

0.96

0.99

0.99

0.97

0.97

0.95

0.99

Recall

0.94

0.99

0.99

0.99

0.99

0.96

0.99

F1-score

0.95

0.99

0.99

0.97

0.97

0.96

0.99

  1. Best accuracy and F1-score results in bold