Table 6 The performance evaluation for forecasting daily streamflow using LSTM.

From: Integrating numerical models with deep learning techniques for flood risk assessment

Criteria Model

Training

Testing

MAE

RMSE

NSE

KGE

MBE

R2

RMSE

NSE

KGE

MBE

MAE

R2

MD-1

3.51

16.46

0.62

0.79

0.03

0.72

12.25

0.67

0.84

0.01

2.80

0.71

MD-2

3.25

16.30

0.66

0.81

-0.49

0.73

11.89

0.71

0.84

-0.51

2.59

0.74

MD-3

3.64

16.33

0.69

0.81

1.7

0.73

11.90

0.65

0.81

1.85

3.11

0.73

MD-4

4.01

16.38

0.56

0.74

1.31

0.72

11.59

0.64

0.70

0.97

3.85

0.73

MD-5

4.00

16.34

0.55

0.73

0.17

0.73

13.98

0.65

0.74

0.97

3.49

0.63

MD-6

5.46

16.22

0.63

0.79

0.27

0.72

11.7

0.78

0.89

0.07

5.29

0.72

MD-7

3.55

17.74

0.61

0.66

4.04

0.73

12.29

0.65

0.68

3.88

3.14

0.73

MD-8

2.56

4.57

0.98

0.94

0.17

0.98

6.40

0.89

0.87

0.09

3.81

0.92

MD-9

2.37

4.36

0.98

0.90

1.37

0.98

7.39

0.86

0.88

1.19

7.4

0.86