Table 4 Results of evaluation of models for predicting DTC, DTS, and DTST on training and testing datasets.

From: Stacked machine learning models for accurate estimation of shear and Stoneley wave transit times in DSI log

Target

Method

Train set (80%)

Test set (20%)

R2

MSE

RMSE

R2

MSE

RMSE

DTC

RF

0.995

0.62

0.79

0.974

3.20

1.79

GB

0.940

7.22

2.69

0.933

8.21

2.87

MPR

0.853

17.81

4.22

0.846

19.03

4.36

SVR

0.818

22.04

4.70

0.815

22.78

4.77

DTS

RF

0.997

0.93

0.96

0.977

8.84

2.97

GB

0.967

12.10

3.47

0.960

15.15

3.89

MPR

0.939

22.43

4.73

0.944

21.23

4.61

SVR

0.920

29.45

5.42

0.920

30.00

5.47

MLR

0.886

42.25

6.50

0.895

39.70

6.30

DTST

RF

0.999

4.69

0.01

0.943

10.26

3.20

CatBoost

0.976

4.18

2.04

0.928

12.89

3.59

LightGBM

0.935

11.79

3.43

0.883

20.95

4.57

ANN

0.803

35.50

5.95

0.795

36.71

6.05