Table 1 Parameter ranges for hybrid classifier optimization.

From: Detection of kidney bean leaf spot disease based on a hybrid deep learning model

Classifier

Parameter optimization

Values

LR

Maximum number of iterations (m)

1–100

penalty coefficient (\(\rho \))

L2, None

RF

Number of trees (\(\gamma \))

2–500

Maximum depth (\(d\))

1–50

Criterion (\(c\))

Gini, entropy

ADB

Number of trees (\((\gamma \))

10–1000

Maximum depth (d)

1–50

Learning rate (c)

0.0001–1

Criterion (\(\gamma \))

Gini, entropy

SGB

Number of trees (\(Y\))

10–1000

Maximum depth (\(d\))

1–20

Learning rate (l)

0.0001–1E

Subsample ()

0.1–1