Table 6 Optimized hyperparameter values of ML classifiers on the dataset.

From: Detection of kidney bean leaf spot disease based on a hybrid deep learning model

Feature extraction models

Classifier

Optimized parameters

  

M

p

VGG16

LR

76

None

Resnet50

LR

100

None

MobileV3

LR

79

None

EfNet-B7

LR

96

None

Feature extraction models

Classifier

Optimized parameters

  

\(\gamma \)

\(d\)

\(\zeta \)

VGG16

RF

211

17

Gini

Resnet50

 

100

12

Entropy

MobileV3

 

141

18

Entropy

EfNet-B7

 

443

45

Entropy

Feature extraction models

Classifier

Optimized parameters

   
  

\(\gamma \)

\(d\)

\(l\)

\(\zeta \)

VGG16

ADB

443

3

0.0641

Gini

Resnet50

ADB

624

2

0.0356

Entropy

MobileV3

ADB

987

1

0.0426

Entropy

EfNet-B7

ADB

433

2

0.0642

Entropy

Feature extraction models

Classifier

Optimized parameters

   
  

\(\gamma \)

\(d\)

\(l\)

\(\lambda \)

VGG16

SGB

803

4

0.0519

0.2352

Resnet50

SGB

208

12

0.0814

0.9231

MobileV3

SGB

786

3

0.0651

0.5322

EfNet-B7

SGB

735

12

0.09655

0.154