Table 1 Performances of various methods on the homologous dataset with different proportions of labels.

From: A semi-supervised domain adaptive medical image segmentation method based on dual-level multi-scale alignment

Labeled ratio

Methods

Evaluation metrics

DSC↑

HD95 (mm)↓

JA↑

–

Baseline U-Net55 \((\user1{\mathcal{D}}_{T} )\)

0.665

14.866

0.498

UDA

\((\user1{\mathcal{D}}_{S} ,\user1{\mathcal{D}}_{U} )\)

DOU et al.46

0.667

9.762

0.5

SIFA56

0.715

5.831

0.556

10%

MML

\((\user1{\mathcal{D}}_{S} ,\user1{\mathcal{D}}_{T} )\)

DOU et al.47

0.816

7.099

0.69

MKD48

0.819

6.128

0.694

CAI et al.49

0.798

6.312

0.664

SSL

\((\user1{\mathcal{D}}_{U} ,\user1{\mathcal{D}}_{T} )\)

FixMatch50

0.822

3.803

0.697

UA-MT51

0.839

5

0.722

ConfKD52

0.821

7.28

0.697

MUE-CoT53

0.832

3.606

0.713

SSDA

\((\user1{\mathcal{D}}_{S} ,\user1{\mathcal{D}}_{U} ,\user1{\mathcal{D}}_{T} )\)

Dual-Teacher +  + 27

0.858

5.66

0.752

IDMNE54

0.861

3

0.756

SLA57

0.875

3.162

0.777

GFDA26

0.868

3.105

0.767

Ours

0.886

2.828

0.795

5%

MML

\((\user1{\mathcal{D}}_{S} ,\user1{\mathcal{D}}_{T} )\)

DOU et al.47

0.767

4.236

0.621

MKD48

0.76

6.198

0.613

CAI et al.49

0.785

9.899

0.647

SSL

\((\user1{\mathcal{D}}_{U} ,\user1{\mathcal{D}}_{T} )\)

FixMatch50

0.776

3.996

0.633

UA-MT51

0.786

5.831

0.647

ConfKD52

0.805

6.325

0.673

MUE-CoT53

0.816

4.018

0.689

SSDA

\((\user1{\mathcal{D}}_{S} ,\user1{\mathcal{D}}_{U} ,\user1{\mathcal{D}}_{T} )\)

Dual-Teacher +  + 27

0.82

4.243

0.696

IDMNE54

0.827

3.921

0.705

SLA57

0.828

3.317

0.707

GFDA26

0.825

4

0.702

Ours

0.842

3.593

0.728